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Frequentist Gaussian Mixture Model:

1. Let K be number of mixture components (clusters), let N be number of samples
2. Let µ1, ...µK ∈ R be mixture centers, let σ be a fixed mixture variance
3. Let 0 < p1, ...pK ≤ 1 be mixture weights, let p1 + ...+ pK = 1

4. Let one-dimensional data X1, . . . , XN ∼
∑K
k=1 pkN(µk, σ

2). More specifically, for each sample i =
1, ..., N :

Randomly generate mixture indicator Zi by letting Zi = k with probability pk (we will denote this
Multi(p1, . . . , pK))

Draw Xi ∼ N(µZi
, σ2)

The parameters of the Gaussian Mixture Model are K the number of clusters, µ = {µ1, . . . , µK} the mix-
ture centers, σ the mixture variance, p = {p1, . . . , pK} the mixture weights.

To summarize our model:

Zi ∼Multi(p1, . . . , pK)

Xi|Zi ∼ N(µZi
, σ2)

Suppose we have data X1, ...XN , we can fit the Gaussian Mixture Model to the data by inferring all the
parameters through maximum likelihood estimation (or some other measurement of goodness of fit). Note that
Z1, ...ZN are not parameters; they are latent variables: there are different sets of Zi’s for different collection of
samples. The latent variables are artifacts of our model construction and also used to interpret the model and
more easily perform inference.

1 Bayesian Finite-Mixture Model
In Bayesian statistics, we treat the parameters as latent random variables. Consequently, we do longer care
about maximum likelihood estimates but rather, we care about the posterior distribution of the parameters
given the data. We need a prior distribution on the parameters however to compute the posterior.

In hand-wavy mathematical notation (unrelated to our GMM notations), if data X is generated from p(X|θ)
with parameter θ, then the posterior

p(θ|X)︸ ︷︷ ︸
posterior

∝ p(X|θ)︸ ︷︷ ︸
likelihood

p(θ)︸︷︷︸
prior
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Remark 1. The central object of interest in Bayesian analysis is the generative model. The generative model
ultimately just specifies the distribution from which the data is generated. However, it also encodes underlying
meaning behind the way the data is generated through latent variables and fixed (hyper)parameters. The prior
is just a part of the generative model.

In Bayesian generative model, there is no such thing as “non-random unknown parameters”. All parameters
are either pre-set to some value a priori or they are latent variables.

Given the data, Bayesian data analysis would perform inference to find posterior distribution of the latent
variables conditioned on the data. We would then get the desired information about the data from these posterior
distributions.

And so for Bayesian finite-mixture modeling, we define the following priors (and hence a generative model)

1. For each k = 1, ...K, let µk ∼ N(0, A) where A is a hyperparameter (usually set to something large)
2. Let the collection (p1, ..., pK) ∼ Dirichlet(α1, ..., αK) where α1, ..., αK are hyperparameters
3. For simplicity, we will say σ is a constant, say σ = 1

4. For finite mixture model, we will say that K is also a constant

To summarize our generative model: We have fixed parameters A, σ, α1, . . . , αK

µk ∼ N(0, A)

(p1, . . . , pK) ∼ Dir(α1, . . . , αK)

Zi|p ∼Multi(p1, . . . , pK)

Xi|Zi,µ, σ ∼ N(µZi
, σ2)

We can represent this via the Plate Notation:

Figure 1: Plate notation for Finite Mixture Model

Here is how we interpret the plate notation:

• Circled symbols are random variables, uncircled symbols are pre-set parameters/hyperparameters
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• Plates indicate that there are many instances of the variables inside

• The arrows indicate “dependency”; distribution of a random variable is completely specified by only the
symbols that point to it

It is important to note that we did not choose the distribution of the priors (p1, . . . , pK) ∼ Dir(α1, . . . , αK)
and µk ∼ N(0, A) arbitrarily. Dirichlet and Gaussian are conjugate priors to Multinomial and fixed-variance
Gaussian distributions respectively.

2 Dirichlet-Process Mixture Model
Now, we would like to have arbitrary number of clusters.

There are several equivalent views of Dirichlet-Process Mixture, that is, there are several seemingly different
generative processes that all define the same distributions on the data. These seemingly different generative
processes are based on equivalent definitions of a Dirichlet Process.

2.1 View 1: Direct Dirichlet Process
Definition 1. A Dirichlet Process is a distribution over all infinite discrete distributions with the following prop-
erty. LetA1, ...An be a partition of R, letG ∼ DP (α,G0), then (G(A1), . . . , G(An)) ∼ Dir(αG0(A1), . . . , αG0(An))

Here is the generative model:
We have fixed parameters α, σ, A

G ∼ DP (α,N(0, A))

(µ′i, Zi)|G ∼ G for i = 1, . . . , N

Xi|µi, Zi ∼ N(µ′i, σ
2) for i = 1, . . . , N

Several things have changed from the finite mixture model:

• Before, we had K distinct µk’s, one for each mixture whereas now, we have a µ′i for every sample.
Many of the µ′i’s will repeat and from the reptitions, we implicitly get the mixture indicators Zi’s; that is,
Zi = Zj iff µ′i = µ′j

• G is a infinite discrete distribution. Infinite because a draw from G can take on possibly infinite number
of values (these are the infinite number of potential cluster centers); discrete because two different draws
from G can take on the same value. G is really the infinite version of the {(µk, pk)}k=1,...K parameters
from the finite mixture model.

• Here, G0, the base distribution for Dirichlet Process, is just N(0, A)

Remark 2. Often, people will write G as G(x) =
∑∞
k=1 pkδµk

(x). This is the probabililty mass function of G,
that is, G(x) is the probability that a draw from G is equal to x.

This generative model is hard to interpret because we don’t know what G really looks like.
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Figure 2: Plate notation for Dirichlet Process Mixture view 1

2.2 View 2: Stick Breaking Prior
Definition 2. We can draw an infinite discrete distribution G from DP (α,G0) as such:

1. Draw µ1, µ2, . . . independently from G0

2. Draw V1, V2, ... ∼ Beta(1, α)
3. Let p1 = V1, p2 = V2(1− V1), p3 = V3(1− V2)(1− V1), etc.
4. Let G be a discrete distribution that puts mass pj at µj

We can now interpret {µk}k=1,...,∞ as the mixture centers and {pk}k=1,...,∞ as the mixture weights for the
infinite number of clusters.

We can now define a new generative model: we have fixed parameters α, σ, A

µk ∼ N(0, A) for k = 1, . . . ,∞
{pk}k=1,...,∞ ∼ Stick-Breaking(α)

Zi|p ∼ Infinite-Multi({pk}k=1,...,∞)

Xi|Zi,µ, σ ∼ N(µZi
, σ2)

To be more precise, for all i, we set Zi = k with probability pk where k can range from 1 to infinity.

What we have really done here is to explicitly describe the Infinite Discrete Distribution G in term of
{µk}k=1,...,∞ and {pk}k=1,...,∞. The previous µ′i = µZi

here.
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Figure 3: Plate notation for Dirichlet Process Mixture view 2

2.3 View 3: Chinese Restaurant Process
From View 1, we know we generated µ′1, . . . µ

′
N by first drawing G from a DP and then drawing from G. We

can also marginalize out G and describe just the distribution of the µ′i’s with the Chinese Restaurant Process.

Definition 3. Let G0, α be parameters to a Dirichlet Process. Let G ∼ DP (α,G0) and let µ′1, . . . , µ
′
N ∼ G.

Then the marginal distributions of (µ′1, . . . , µ
′
N ) ∼ CRP (α,G0) is the Chinese Restaurant Process:

1. Draw µ′1 ∼ G0

2. Draw µ′2 =

{
µ′1 w.p. 1

2+α−1
∼ G0 w.p. α

2+α−1

3. ... Draw µ′n =

{
µ′j w.p. 1

n+α−1 for j = 1, . . . , n− 1

∼ G0 w.p. α
n+α−1

The intuitive description:

• Every sample µ′i is a new customer

• We say two customers µ′i and µ′j sit at same table if µ′i = µ′j

• The customers come in one by one. A new customer can either randomly sit by an old customer or
demand that the restaurant brings out a new table.

• After allN customers come in, the number of tables are the number of unique values among {µ′i}i=1,...,N

Clusters formed by the CRP has the “rich gets richer” phenomenon. Notice that we also implicitly draw the
cluster indicator Zi’s from CRP.

With the CRP, we can define our third generative model:

(µ′i, Zi) ∼ CRP (α,G0)

Xi|Zi, µ′i, σ ∼ N(µ′i, σ
2)
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Figure 4: Plate notation for Dirichlet Process Mixture view 3
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