Homework 6 )
10-702/36-702 Statistical Machine Learning
Due: Friday April 29 3:00

Hand in to: Michelle Martin GHC 8001.

NOTE: Choose any 2 - one on kernels and one on random matrices/projection

1. Kernels Versus Kernels. Generate n = 400 data points (X1,Y7),...,(X,,Y,) as follows. Take
X1,...,Xpn ~ Uniform(—1,1). Take

where €1,...,€6, ~ N(0,1),

(x+2)%/2 -1<z<-05
() = z/2+ 0.875 -05<z<0

—5(x —0.2)2+1.075 0<x <05

z+0.125 05<z<1

and
o(xz) =0.2 —0.1cos(2mx).

Randomly split the data into two sets of n = 200 observations each. The first half is the training data
and the second is the testing data.

(a) Estimate m using kernel regression. Use a Gaussian kernel. Choose the bandwidth by cross-
validation (using the test data). Plot the true function, the data and the estimated function. Plot the
residuals. Plot the cross-vaidation function as a function of h.

(b) Now estimate m using RKHS methods. Specifically, choose i to minimize

> (Vi = m(X:))” + Alml[%
i=1

where the kernel K is K(x,y) = e=(@=9?/7"  There are two tuning parameters, A and o. Choose
both by cross-validation (using the test data). Make the same plots as in (a). Comment on the
differences/simlarities between the two estimates.

2. RKHS. Let F denotes all real-valued functions on [0,1] with m continous derivatives. Define the

kernel
m—1

Ky =Y 2L +/01 (w7 —wi

=0 (m-1!  (m-1)

and inner prodict
m—1 1
() = 3 19000 + [ @)™ @)
s=0

Verify that this kernel has the reproducing property: (K, f) = f(x).

Hint: By Taylor’s theorem with remainder, we can write

m—1 1 (m—1)
= S 2 @y 7 ) )y
f0 =3 G0+ [ S



3. Random Matrices. Refer to the notes on random matrices.
(a) Prove Lemma 1.

(b) The notes contain a proof sketch for Theorem 4. Fill in the missing details and provide a complete
proof.

4. Low Rank Approximation via Random Projections. A low rank approximation of an mxn(m >
n) matrix A is another matrix Ay such that 1) The rank of Ay is at most k and 2) ||[A — Ag|| is

minimized for some norm. It is well known that for the Frobenius norm (HAH F=1/2 A2 )

i) we have

A = Ele o;u;v] where the singular value decomposition (SVD) of A is A =", o;u;v] . However,
the complexity of computing the SVD is O(mn?).

We consider an alternate method based on random projections that is much faster. The algorithm is
as follows:

1. Let R be an m x ¢ matrix such that R;; are drawn ii.d from N(0,1). Also we have that

¢ > c(logn)/€® for some constant ¢ > 0. Compute B = %RTA.
2. Compute the SVD of B, B = Zle Aia;bl.

3. Return: A, = A - Zle b;bl.
e Show that with high probability
1A = ApllF < 1A = Agl|F + 2| A 7

The following form of the JL Lemma will be useful: A set of n vectors z1,...,z, in R™ can be
projected down to RTzy,..., R 'z, in R with high probability using a m x £ random matrix R
with i.i.d N(0,1) entries such that

(1= llaal® < 1R il* < (1 + ) s

for i =1,...,n provided ¢ > c(logn)/€? for some constant ¢ > 0.

e What is the computational complexity of this procedure?



