Homework 6
 10-702/36-702 Statistical Machine Learning

Due: Friday April 29 3:00
Hand in to: Michelle Martin GHC 8001.

NOTE: Choose any 2 - one on kernels and one on random matrices/projection

1. Kernels Versus Kernels. Generate $n=400$ data points $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ as follows. Take $X_{1}, \ldots, X_{n} \sim \operatorname{Uniform}(-1,1)$. Take

$$
Y_{i}=m\left(X_{i}\right)+\sigma\left(X_{i}\right) \epsilon_{i}
$$

where $\epsilon_{1}, \ldots, \epsilon_{n} \sim N(0,1)$,

$$
m(x)= \begin{cases}(x+2)^{2} / 2 & -1 \leq x<-0.5 \\ x / 2+0.875 & -0.5 \leq x<0 \\ -5(x-0.2)^{2}+1.075 & 0 \leq x<0.5 \\ x+0.125 & 0.5 \leq x<1\end{cases}
$$

and

$$
\sigma(x)=0.2-0.1 \cos (2 \pi x)
$$

Randomly split the data into two sets of $n=200$ observations each. The first half is the training data and the second is the testing data.
(a) Estimate m using kernel regression. Use a Gaussian kernel. Choose the bandwidth by crossvalidation (using the test data). Plot the true function, the data and the estimated function. Plot the residuals. Plot the cross-vaidation function as a function of h.
(b) Now estimate m using RKHS methods. Specifically, choose \hat{m} to minimize

$$
\sum_{i=1}\left(Y_{i}-m\left(X_{i}\right)\right)^{2}+\lambda\|m\|_{K}^{2}
$$

where the kernel K is $K(x, y)=e^{-(x-y)^{2} / \sigma^{2}}$. There are two tuning parameters, λ and σ. Choose both by cross-validation (using the test data). Make the same plots as in (a). Comment on the differences/simlarities between the two estimates.
2. RKHS. Let \mathcal{F} denotes all real-valued functions on $[0,1]$ with m continous derivatives. Define the kernel

$$
K(x, y)=\sum_{s=0}^{m-1} \frac{x^{s}}{s!} \frac{y^{s}}{s!}+\int_{0}^{1} \frac{(x-u)_{+}^{m-1}}{(m-1)!} \frac{(y-u)_{+}^{m-1}}{(m-1)!} d u
$$

and inner prodict

$$
\langle f, g\rangle=\sum_{s=0}^{m-1} f^{(s)}(0) g^{(s)}(0)+\int_{0}^{1} f^{(m)}(x) g^{(m)}(x) d x
$$

Verify that this kernel has the reproducing property: $\left\langle K_{x}, f\right\rangle=f(x)$.
Hint: By Taylor's theorem with remainder, we can write

$$
f(x)=\sum_{s=0}^{m-1} \frac{x^{s}}{s!} f^{(s)}(0)+\int_{0}^{1} \frac{(x-u)_{+}^{(m-1)}}{(m-1)!} f^{(m)}(u) d u
$$

3. Random Matrices. Refer to the notes on random matrices.
(a) Prove Lemma 1.
(b) The notes contain a proof sketch for Theorem 4. Fill in the missing details and provide a complete proof.
4. Low Rank Approximation via Random Projections. A low rank approximation of an $m \times n(m \geq$ n) matrix A is another matrix A_{k} such that 1) The rank of A_{k} is at most k and 2) $\left\|A-A_{k}\right\|$ is minimized for some norm. It is well known that for the Frobenius norm $\left(\|A\|_{F}=\sqrt{\sum_{i j} A_{i j}^{2}}\right)$, we have $A_{k}=\sum_{i=1}^{k} \sigma_{i} u_{i} v_{i}^{T}$ where the singular value decomposition (SVD) of A is $A=\sum_{i=1}^{n} \sigma_{i} u_{i} v_{i}^{T}$. However, the complexity of computing the SVD is $O\left(m n^{2}\right)$.
We consider an alternate method based on random projections that is much faster. The algorithm is as follows:
5. Let R be an $m \times \ell$ matrix such that $R_{i j}$ are drawn i.i.d from $N(0,1)$. Also we have that $\ell \geq c(\log n) / \epsilon^{2}$ for some constant $c>0$. Compute $B=\frac{1}{\sqrt{\ell}} R^{T} A$.
6. Compute the SVD of $B, B=\sum_{i=1}^{\ell} \lambda_{i} a_{i} b_{i}^{T}$.
7. Return: $\tilde{A}_{k}=A \cdot \sum_{i=1}^{k} b_{i} b_{i}^{T}$.

- Show that with high probability

$$
\left\|A-\tilde{A}_{k}\right\|_{F}^{2} \leq\left\|A-A_{k}\right\|_{F}^{2}+2 \epsilon\left\|A_{k}\right\|_{F}^{2}
$$

The following form of the JL Lemma will be useful: A set of n vectors x_{1}, \ldots, x_{n} in \mathbb{R}^{m} can be projected down to $R^{T} x_{1}, \ldots, R^{T} x_{n}$ in \mathbb{R}^{ℓ} with high probability using a $m \times \ell$ random matrix R with i.i.d $N(0,1)$ entries such that

$$
(1-\epsilon)\left\|x_{i}\right\|^{2} \leq\left\|R^{T} x_{i}\right\|^{2} \leq(1+\epsilon)\left\|x_{i}\right\|^{2}
$$

for $i=1, \ldots, n$ provided $\ell \geq c(\log n) / \epsilon^{2}$ for some constant $c>0$.

- What is the computational complexity of this procedure?

