
Homework 5
10-702/36-702 Statistical Machine Learning

Due: Friday April 1 3:00

Hand in to: Michelle Martin GHC 8001.

1. Simulation, E.M. and Variational Approximations. Let X1, . . . , Xn ∼ g(x; p)
where

g(x; p) = pf0(x) + (1− p)f1(x).

For simplicity, we will assume that f0 and f1 are one-dimensional Gaussian distributions
with known means and variances. The only unknown is p. The problem is to
estimate p.

(a) Derive the explicit steps for the EM algorithm for finding the MLE of p.

(b) Suppose we take a Bayesian approach with a Beta(α, β) prior for p. The posterior
for p given Xn = (X1, . . . , Xn) is

π(p |X1, . . . , Xn) ∝ Ln(p)π(p)

where the likelihood is

Ln(p) =
n∏
i=1

(pf0(xi) + (1− p)f1(xi))

and the prior is
π(p) ∝ pα−1(1− p)β−1.

Derive the steps for the Gibbs sampling algorithm (by introducing latent variables).

(c) Derive a random walk MCMC algorithm. (You will need to work with a transfor-
mation of p such as ψ = h(p) = log(p/(1 − p)); otherwise the boundaries of the unit
interval will cause problems.)

(d) Implement the algorithms from parts (a), (b) and (c). Simulate n = 25 observations
from the model

1

3
N(0, 1) +

2

3
N(3, 1).

Use a Beta(4, 4) prior distribution over p. For the mle, compare the EM estimate with
the exact MLE (which you can compute numerically). For the Bayesian analysis, show
trace plots and compare the approximate posterior with the exact posterior (obtained
numerically).

(e) Derive the mean field variational approximation of the posterior. Run the varia-
tional approximation for the same data and compare with the exact answer.
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2. Nonparametric Density Estimation Using Bayesian Simulation Methods. In
this problem, you will estimate an unknown density using a mixture of Gaussians, as
described in Ishwaran and James (2002), ’Approximate Dirichlet Process Computing
in Finite Normal Mixtures: Smoothing and Prior Information’.

Consider the Bart Simpson density

p(x) =
1

2
φ(x; 0, 1) +

1

10

4∑
j=0

φ(x; (j/2)− 1, 1/10),

where φ(x;µ, σ) denotes a Gaussian density with mean µ and standard deviation σ.
Draw n = 1000 observations from p.

Use the following hierarchical model to estimate the true density:

F ∼ F0

(µi, σi) |F ∼ F

Xi |µi, σi ∼ N (µi, σi),

where F0 =
∑N

k=1wkδ(mk,sk) is a random probability measure and w = (w1, . . . , wN)
are random weights chosen using the stick-breaking construction

w1 = V1

wk = Vk

k−1∏
i=1

(1− Vi) k = 2, . . . , N,

where V1, V2, . . . , VN−1 ∼ Beta(1, α) and Vk = 1 to ensure that
∑

k wk = 1. The priors
on {(mk, sk)}k=1,...,N and α are set as follows

θ ∼ N (0, A)

mk | θ, σm ∼ N (θ, σm)

(s2
k)
−1 | ν1, ν2 ∼ Gamma(ν1, ν2)

α | η1, η2 ∼ Gamma(η1, η2),

where A, σm, ν1, ν2, η1, η2 are hyperparameters. We are going to set the hyperparame-
ters as follows: A = 1000, ν1 = ν2 = 2, σm is set equal to 4 standard deviations of the
data and η1 = η2 = 2.

Denote by (K1, . . . , Km) the classification variables that map the realization of (µi, σi)
to a particular cluster (mk, sk). Note that Ki ∈ {1, . . . , N} and

Ki |w ∼
N∑
k=1

wkδk.
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You will implement the blocked Gibbs sampler to explore the posterior PN |X. The
blocked Gibbs sampler is implemented by iteratively drawing values from the following
conditional distributions:

m | s,K, θ,X

s | m,K,X

K | w,m, s,X

w | K, α

α | w

θ | m.

The method eventually produces a draw from the distribution (m,, K,w, α, θ |X).
These values produce a random probability measure

P∗
N(·) =

N∑
k=1

wkδ(mk,sk)(·),

which is a draw from the posterior PN |X.

The predictive density f(x |X) can be approximated as

f(x |X) ≈ 1

B

B∑
b=1

N∑
k=1

w
(b)
k φ(x;m

(b)
k , s

(b)
k ),

where (m(b), s(b),w(b)) are different realizations of PN |X.

(a) Implement the Gibbs sampler using the form of conditional probabilities on page
10 and 11 of Ishwaran and James (2002). Use N = 50 and B = 100. Plot the
predictive density.

(b) Compare to the kernel density estimator.
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