
Homework 3
10-702/36-702 Statistical Machine Learning

Due: Friday Feb 18 3:00

Hand in to: Michelle Martin GHC 8001.

1 Nonparametric Regression

1.1 Theory

Consider the following nonparametric regression model:

Yi = m(xi) + ǫi, i = 1, . . . , n

where xi = i/n an ǫi ∼ N(0, σ2). Define ψ0, ψ1, ψ2, . . . , on [0, 1] by ψ0(x) = 1 and

ψj(x) =
√

2 cos(πjx)

for j ≥ 1. Note that ψ0, ψ1, ψ2, . . . , are orthonormal:
∫ 1

0
ψ2

j (x)dx = 1 for each j and∫ 1

0
ψj(x)ψk(x)dx = 0 for each j 6= k. Assume that m can be expanded in this basis. Hence,

m(x) =
∞∑

j=1

θjψj(x)

where θj =
∫ 1

0
m(x)ψj(x)dx. Let β ≥ 1. Assume that θ = (θ0, θ1, . . . , ) ∈ Θ where

Θ =

{

θ :

∞∑

j=0

θ2
j j

2β ≤ C

}

where 0 ≤ C <∞. Let

θ̂j =
1

n

n∑

i=1

Yiψj(xi)

and

m̂(x) =

J∑

j=0

θ̂jψj(x).

1. Show that

E(θ̂j) = θj +O

(
1√
n

)
.

For the rest of the question, you can ignore the second term and assume that E(θ̂j) = θj .
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2. Show that

Var(θ̂j) =
σ2

n
.

3. Show that

E

(∫ 1

0

(m̂(x) −m(x))2dx

)
=
Jσ2

n
+

∞∑

j=J+1

θ2
j .

4. Let J = n
1

2β+1 . Show that

sup
θ∈Θ

E

(∫ 1

0

(m̂(x) −m(x))2dx

)
≤ Cn−

2β

2β+1 .

2 Nonparametric Classification

1. In the Adaboost algorithm, the choice of a weak classifier ht and its weight αt is
specified as follows: ht is chosen to minimize the error ǫt on the weighted training
data, and αt = 1

2
ln(1−ǫt

ǫt
). In this problem, we will show that these choices correspond

to greedily minimizing the exponential loss at each iteration.

(a) Show that the exponential loss

1

n

n∑

i=1

e−Yif(Xi) = ΠT
t=1Zt,

where Zt =
∑n

i=1wt(i)e
−αtYiht(Xi) is the normalizing factor for the data weights

at iteration t and f(Xi) =
∑T

t=1 αtht(Xi). (Hint: Express the data weights at
each iteration in terms of the initial data weights and then use the fact that the
weights at iteration T + 1 sum to 1. )

(b) Show that choosing αt and ht greedily to minimize Zt at each iteration, leads to
the choices used in Adaboost. (Hint: Express Zt in terms of ǫt and then minimize
Zt with respect to αt and then for ht).

2. In this part, we will derive a generalization bound based on the VC dimension for
Adaboost, when the weak hypothesis are chosen from a finite class H. Let G =
{all functions of form sign(

∑T

t=1 αtht(x))}.

(a) Notice that for a fixed choice of h1, h2, . . . , hT , the Adaboost final classifier is a
hyperplane classifier with coordinates h1, h2, . . . , hT . Thus, argue that the number
of ways that n data points can be partitioned by G is bounded as (en/T )T for a
fixed choice of h1, h2, . . . , hT .
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(b) Now consider how many choices of h1, h2, . . . , hT are possible. Use this to derive
a bound on the growth function S(G, n), and a generalization error bound of the
form: With probability > 1 − δ, for all H ∈ G

R(H) ≤ R̂(H) +O

(√
T ln |H| + T ln(en/T ) + ln(1/δ)

n

)

3 Nonparametric Bayes

Let X1, . . . , Xn ∼ F where Xi ∈ R. Let the prior π for F be DP(α, F0).
(a) Let F n(x) be the posterior Bayes estimator of F (x). Here x is some arbitrary, fixed

value. Find the bias and variance of Fn(x). Let Fn(x) = 1
n

∑n

i=1 I(Xi ≤ x) be the empirical

measure. When is the the mean squared error of F n(x) smaller than the mean squared error
of Fn(x)?

(b) Use Hoeffding’s inequality to get bounds on

P(Fn(x) − F (x) > ǫ)

and
P(F n(x) − F (x) > ǫ).
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