Homework 2 10-702/36-702 Statistical Machine Learning

Hand in to: Michelle Martin GHC 8001.

1 Convexity and Optimization

1. (Convexity)
(a) Show that $1 / g(x)$ is convex if g is twice-differentiable, concave and positive (hint: use composition property).
(b) We know that for every point on the boundary of a convex set, there exists a supporting hyperplane. The converse is not necessarily true. Give an example of a non-convex set for which there exists a supporting hyperplane for every point on its boundary.
2. (Subdifferentials) For Lasso problems, we want to solve an optimization of $\arg \min _{\beta \in \mathbb{R}^{n}}$ $\frac{1}{2}\|X \beta-Y\|+\lambda\|\beta\|_{1}$ where X is $m \times n$ design matrix and Y is a $m \times 1$ response vector.

In this problem, we will assume design matrix is identity and solve the simpler problem of $\arg \min _{z \in \mathbb{R}^{n}} \frac{1}{2}\|z-y\|_{2}^{2}+\lambda\|z\|_{1}$ where y is the $n \times 1$ response vector. Gradient descent algorithm for actual Lasso solves this simpler problem many times as intermediate steps.

Provide a proof for all your solutions:
(a) Let $f: \mathbb{R} \rightarrow \mathbb{R}$, find the subdifferential of $f(z)=|z|$
(b) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, find the subdifferential of $f(z)=\|z\|_{1}$
(c) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, let $y \in \mathbb{R}^{n}$ be a fixed vector, find the subdifferential of $f(z)=$ $\frac{1}{2}\|z-y\|_{2}^{2}+\lambda\|z\|_{1}$
(d) Using the fact that z minimizes f if and only if $0 \in \partial f(z)$, prove that we can find z^{*}, the minimizer of $\frac{1}{2}\|z-y\|_{2}^{2}+\lambda\|z\|_{1}$, by soft-thresholding y, i.e.

$$
z^{*}(i)=\left\{\begin{array}{cc}
y_{i}-\lambda & \text { if } y_{i}>\lambda \\
y_{i}+\lambda & \text { if } y_{i}<-\lambda \\
0 & \text { if }-\lambda \leq y_{i} \leq \lambda
\end{array}\right.
$$

3. (Optimization) In class, we considered the following entropy maximization optimization problem:

$$
\begin{array}{ll}
\min & \sum_{i=1}^{n} x_{i} \log x_{i} \\
\text { s.t. } & A x \leq b \\
& 1^{T} x=1
\end{array}
$$

(a) Argue that the primal is a convex optimization problem.
(b) Write down the KKT conditions for this problem.
(c) Using the KKT conditions, show that the primal optimal solution x^{*} (the maximum entropy distribution under given constraints) can be obtained if you are given a dual optimal solution λ^{*}.

2 Density Estimation

Let X_{1}, \ldots, X_{n} be a sample from a distribution P with density p where $X_{i} \in[0,1]^{d}$. Divide the cube $[0,1]^{d}$ into sub-cubes B_{1}, \ldots, B_{N} with sides of length h. The number of sub-cubes is thus $N=(1 / h)^{d}$. The histogram density estimator is

$$
\widehat{p}_{h}(x)=\sum_{j=1}^{N} \frac{\widehat{\pi}_{j}}{h^{d}} I\left(x \in B_{j}\right)
$$

where $\widehat{\pi}_{j}=\frac{1}{n} \sum_{i=1}^{n} I\left(X_{i} \in B_{j}\right)$. Assume that $p \in \mathcal{P}$ where

$$
\mathcal{P}=\{p:|p(x)-p(y)| \leq L\|x-y\|\} .
$$

(a) Find an upper bound on $R(h)=\mathbb{E}\left|\widehat{p}_{h}(x)-p(x)\right|^{2}$. (Hint: find an upper bound on the bias and variance of $\widehat{p}_{h}(x)$.)
(b) Find h_{n} to minimize (the bound on) $R(h)$. At what rate does $R\left(h_{n}\right)$ go to 0 ?
(c) Derive an exponential inequality for $\left|\widehat{p}_{h}(x)-p(x)\right|$.
(d) Prove a concentration inequality for $\int|p(x)-\widehat{p}(x)| d x$. The following result will be helpful: If $\left(Y_{1}, \ldots, Y_{k}\right)$ is a random vector with a $\operatorname{Multinomial}\left(n, p_{1}, \ldots, p_{k}\right)$ distribution and if $0<\epsilon<1$ and $k / n \leq \epsilon^{2} / 20$ then

$$
\mathbb{P}\left(\sum_{j=1}^{k}\left|Y_{j}-\mathbb{E}\left(Y_{j}\right)\right| \geq n \epsilon\right) \leq 3 e^{-n \epsilon^{2} / 25}
$$

