
Homework 2
10-702/36-702 Statistical Machine Learning

Due: Friday Feb 4 3:00

Hand in to: Michelle Martin GHC 8001.

1 Convexity and Optimization

1. (Convexity)

(a) Show that 1/g(x) is convex if g is twice-differentiable, concave and positive (hint:
use composition property).

(b) We know that for every point on the boundary of a convex set, there exists a
supporting hyperplane. The converse is not necessarily true. Give an example of
a non-convex set for which there exists a supporting hyperplane for every point
on its boundary.

2. (Subdifferentials) For Lasso problems, we want to solve an optimization of arg minβ∈Rn

1
2
||Xβ−Y ||+λ||β||1 where X is m×n design matrix and Y is a m×1 response vector.

In this problem, we will assume design matrix is identity and solve the simpler prob-
lem of arg minz∈Rn

1
2
||z − y||22 + λ||z||1 where y is the n× 1 response vector. Gradient

descent algorithm for actual Lasso solves this simpler problem many times as interme-
diate steps.

Provide a proof for all your solutions:

(a) Let f : R→ R, find the subdifferential of f(z) = |z|
(b) Let f : Rn → R, find the subdifferential of f(z) = ||z||1
(c) Let f : Rn → R, let y ∈ Rn be a fixed vector, find the subdifferential of f(z) =

1
2
||z − y||22 + λ||z||1

(d) Using the fact that z minimizes f if and only if 0 ∈ ∂f(z), prove that we can find
z∗, the minimizer of 1

2
||z − y||22 + λ||z||1, by soft-thresholding y, i.e.

z∗(i) =


yi − λ if yi > λ
yi + λ if yi < −λ

0 if − λ ≤ yi ≤ λ
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3. (Optimization) In class, we considered the following entropy maximization optimiza-
tion problem:

min
n∑
i=1

xi log xi

s.t. Ax ≤ b

1Tx = 1

(a) Argue that the primal is a convex optimization problem.

(b) Write down the KKT conditions for this problem.

(c) Using the KKT conditions, show that the primal optimal solution x∗ (the max-
imum entropy distribution under given constraints) can be obtained if you are
given a dual optimal solution λ∗.

2 Density Estimation

Let X1, . . . , Xn be a sample from a distribution P with density p where Xi ∈ [0, 1]d. Divide
the cube [0, 1]d into sub-cubes B1, . . . , BN with sides of length h. The number of sub-cubes
is thus N = (1/h)d. The histogram density estimator is

p̂h(x) =
N∑
j=1

π̂j
hd
I(x ∈ Bj)

where π̂j = 1
n

∑n
i=1 I(Xi ∈ Bj). Assume that p ∈ P where

P =

{
p : |p(x)− p(y)| ≤ L ||x− y||

}
.

(a) Find an upper bound on R(h) = E|p̂h(x) − p(x)|2. (Hint: find an upper bound on
the bias and variance of p̂h(x).)

(b) Find hn to minimize (the bound on) R(h). At what rate does R(hn) go to 0?

(c) Derive an exponential inequality for |p̂h(x)− p(x)|.

(d) Prove a concentration inequality for
∫
|p(x) − p̂(x)|dx. The following result will be

helpful: If (Y1, . . . , Yk) is a random vector with a Multinomial(n, p1, . . . , pk) distribution and
if 0 < ε < 1 and k/n ≤ ε2/20 then

P

(
k∑
j=1

|Yj − E(Yj)| ≥ nε

)
≤ 3e−nε

2/25.
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