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Parametric methods

Assume some functional form (Gaussian, Bernoulli,
Multinomial, logistic, Linear, Quadratic) for

— P(X:|Y) and P(Y) as in Naive Bayes
— P(Y|X) as in Logistic, Linear and Nonlinear regression, SVM

Estimate parameters (u,02%,0,w,3) using MLE/MAP
and plugin

Pro — need few data points to learn parameters

Con — Strong distributional assumptions, not satisfied
In practice



Example

Hand-written digit images
projected as points on a two-dimensional (nonlinear) feature spaces



Non-Parametric methods

Typically don’t make any distributional assumptions

As we have more data, we should be able to learn
more complex models

Let number of parameters scale with number of
training data

Today, we will see some nonparametric methods for
— Density estimation
— Classification

— Regression



Histogram density estimate

Partition the feature space into distinct bins with widths A, and
count the number of observations, n;, in each bin.
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Effect of histogram bin width

~ n;
plx) = X LeeBin, # bins = 1/A

~ 1 Z;’L:l 1Xj€BiIl$
p(z) = - / li

Bias of histogram density estimate:

E[p(x)] = 5 P(X € Bin,) = 5 L e T p(:g)A — (@)

Assuming density it roughly constant in each bin
(holds true if A is small)
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Bias — Variance tradeoff

P(z) — p(x)| = [p(x) — Ep(z)] + E[p(z)] — p()

Variance Bias

Bias — how close is the mean of estimate to the truth
Variance — how much does the estimate vary around mean

e Choice of bin-width A or #bins # bins = 1/A
Elp(x)] =~ p(z) if A is small  (p(x) approx constant per bin)

Elp(z)] = p(x) if Aislarge  (more data per bin,
stable estimate)

Small A, large #bins <> “Small bias, Large variance”
Large A, small #bins -, “Large bias, Small variance”



Choice of #bins

plx) = X LeeBin, # bins = 1/A
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Histogram as MLE

Underlying model — density is constant on each bin
Parameters p;, : density in bin j

Note ij — ]./A since /p(ZE)dZE =1
J

Maximize likelihood of data under probability model with
parameters p,

p(x) = argmax P(X1,..., Xui {ps}; 1) ij =1/A

Dj

* Show that histogram density estimate is MLE under this

model — HW/Recitation



Kernel density estimate

LLLLLLLLL

* Histogram — blocky estimate

n
1 2]21 1Xj EBinm

PEET I

* Kernel density estimate aka “Parzen/moving window
method”

o1 X e <a
plz) = <

n
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Kernel density estimate

. p(x)—iZj:1K( s )

more generally

e (25)

n

boxcar kernel :

K(z) = %[(l’),

-1 0 1 Xj—A Xj Xj—FIA

(zaussian kernel :

| 1 _ 2,

K(z)= ——e /2 1 A
/9
\"‘u’ﬂ-




Kernel density estimation

* Place small "bumps" at each data point, determined by the
kernel function.
* The estimator consists of a (hormalized) "sum of bumps”.

Img src: Wikipedia

Gaussian bumps (red) around six data points and their sum (blue)

* Note that where the points are denser the density estimate
will have higher values.
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boxcar kernel :

K(z)= %I(l‘).

(Gaussian kernel :

o | 9,
I\ (I) = ,—_e—I /2
V2T

Kernels

Any kernel
function that
satisfies

=
s
v
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Kernels

Finite support

boxcar kernel : — only need local
| points to compute
PR estimate
K(z)= 5 (z),
-1 0 1
i ini r
Gaussian kernel : Infinite support
- need all points to
o | =y <—> compute estimate
K (z) = “)_e | L -But quite popular
Var since smoother

O
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Histograms vs. Kernel density
estimation
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k-NN (Nearest Neighbor) density

estimation
Ny
* Histogram plz) = nA 1.eBin,
, ~ oy e
 Kernel density est plz) = nA

Fix A, estimate number of points within A of x (n, or
n ) from data

Fix n,= k, estimate A from data (volume of ball
around x that contains k training pts)
N k

* k-NN density est p(z) = ni\y
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k-NN density estimation

0 b= e —
0 0.5 i
5 T
0 0.5 i

K acts as a smoother.

Not very popular for density
estimation — spiked estimates

But a related version
for classification quite popular
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From
Density estimation
to
Classification



k-NN classifier
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k-NN classifier

Test document

@ Sports
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® Arts
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k-NN classifier (k=5)

Test document

@
O
@
@
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®

What should we predict? ... Average? Majority? Why? 22



k-NN classifier

 Optimal Classifier: f"(z) arg max P(y|z)

arg m;Xp(:vly)P(y)

* k-NN Classifier: frnny(z) = arg max Pen N (zly) P(y)
= arg max ky
N k., —> # training pts of class y _
Prnn (2ly) = ——— " that lie within A, bal D ky =k
Yy y L Y

L—— # total training pts of class y

n 23



1-Nearest Neighbor (kNN) classifier
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2-Nearest Neighbor (kNN) classifier

K even not used

. . .

o in practice
(]
(]
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o
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3-Nearest Neighbor (kNN) classifier
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5-Nearest Neighbor (kNN) classifier
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What is the best K?

Bias-variance tradeoff
Larger K => predicted label is more stable
Smaller K => predicted label is more accurate

Similar to density estimation
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1-NN classifier — decision boundary

Voronoi
Diagram




k-NN classifier — decision boundary

1NN 5NN ONN

* K acts as a smoother (Bias-variance tradeoff)
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Case Study:

kNN for Web Classification

Dataset

— 20 News Groups (20 classes)

— Download :(http://people.csail.mit.edu/jrennie/20Newsgroups/)

— 61,118 words, 18,774 documents
— Class labels descriptions

comp.graphics
comp.os.ms-windows_misc
comp.svs.ibm pc hardware
comp.svs.mac hardware
comp.windows.x

rec.autos
rec.motorcvcles
rec_sport.baseball
rec_sport hockey

talk politics misc
misc forsale talk politics. guns

talk politics mideast

sci.crvpt
sci.electronics

sci.med

sci.space

talk religion misc
alt atheism
soc.religion christian
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Experimental Setup

* Training/Test Sets:
— 50%-50% randomly split.
— 10 runs
— report average results

e Evaluation Criteria:

Z I( predict, — true label.)

iclest set

Accuracy =
i # of test samples
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Accuracy
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082
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Results: Binary Classes

alt.atheism

VS.
comp.graphics

/

comp.windows.x
VvSs.

rec.motorcycles
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From
Classification

to
Regression



Temperature sensing

* What is the temperature

in the room? at location x?
’..oo ...00
o _© o _©
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e06e e SOELIet S
o
.0. .0‘0.0 .o. ‘.0..0.0‘0.0.|
.1 > ~ " Yily.
T==- Y T(@:Z@;l tlIXiaf[<h
noi=1 2i=1 1|1 X;—z||<h

Average “Local” Average
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Kernel Regression @ .

Aka Local Regression . ..*,-'.-’..-'.

Nadaraya-Watson Kernel Estimator

n
m(X) = Z; w;Y; Where wi(X) = K XZXi)

Weight each training point based on distance to test
point

Boxcar kernel yields boxcar kernel :

. 1
local average K(z) = 5I(x),

‘
— — h—
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boxcar kernel :

K(z)= %I(l’).

(Gaussian kernel :

| | 2,
K(z) = ——e % /2
)= 7o

Kernels

37



power

Choice of kernel bandwidth h

power

h= 1 Too small h= 10 '* Too small Image Source:
g Larry’s book — All
<o) .
% of Nonparametric
o Statistics
(I) 2(l]0 4(l]0 ('J 260 460
multipole multipole Choice of kernel is
not that important
h=200 :; . Too large
2 ' T~
l. I I I. I T
0 200 400 0 200 400

multipole multipole 28



Kernel Regression as Weighted Least
Squares

min 3w (FD - VP () =
1 =1

Weighted Least Squares

Kernel regression corresponds to locally constant estimator
obtained from (locally) weighted least squares

i.e.set f(X)=p (aconstant)
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Kernel Regression as Weighted Least

Squares
set f(X)=p (aconstant)
o K (5
min wz(ﬁ - YtL)Q (X) = f
/5’ Z; | w;i(X) ShK XZXi)
constant
8J(ﬂ) =2 3 wz(ﬁ — Y;) =0 Notice that 2”: w; = 1
op i=1 i=1

1=1
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Local Linear/Polynomial Regression

min 3w (FD - VP () =
1 =1

Weighted Least Squares

Local Polynomial regression corresponds to locally
polynomial estimator obtained from (locally) weighted least

squares 3
f(X;) = Bo+B1(X; X>+—<X —X)2 4+ p(X —X)P
I.e. set

(local polynomial of degree p around X)
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Summary

* Instance based/non-parametric approaches

Four things make a memory based learner:

1. Adistance metric, dist(x,X)
Euclidean (and many more)

2.  How many nearby neighbors/radius to look at?
k, A/h

3. A weighting function (optional)
W based on kernel K

4. How to fit with the local points?
Average, Majority vote, Weighted average, Poly fit



Summary

* Parametric vs Nonparametric approaches

» Nonparametric models place very mild assumptions on
the data distribution and provide good models for
complex data

Parametric models rely on very strong (simplistic)
distributional assumptions

» Nonparametric models (not histograms) requires
storing and computing with the entire data set.

Parametric models, once fitted, are much more efficient
in terms of storage and computation.



What you should know...

* Histograms, Kernel density estimation
— Effect of bin width/ kernel bandwidth
— Bias-variance tradeoff

e K-NN classifier

— Nonlinear decision boundaries

 Kernel (local) regression
— Interpretation as weighted least squares
— Local constant/linear/polynomial regression
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Bias-variance tradeoff

e Simulations
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