

Non-parametric methods

**Kernel density estimate,
kNN classifier, kernel regression**

Aarti Singh & Barnabas Poczos

Machine Learning 10-701
Feb 13, 2014

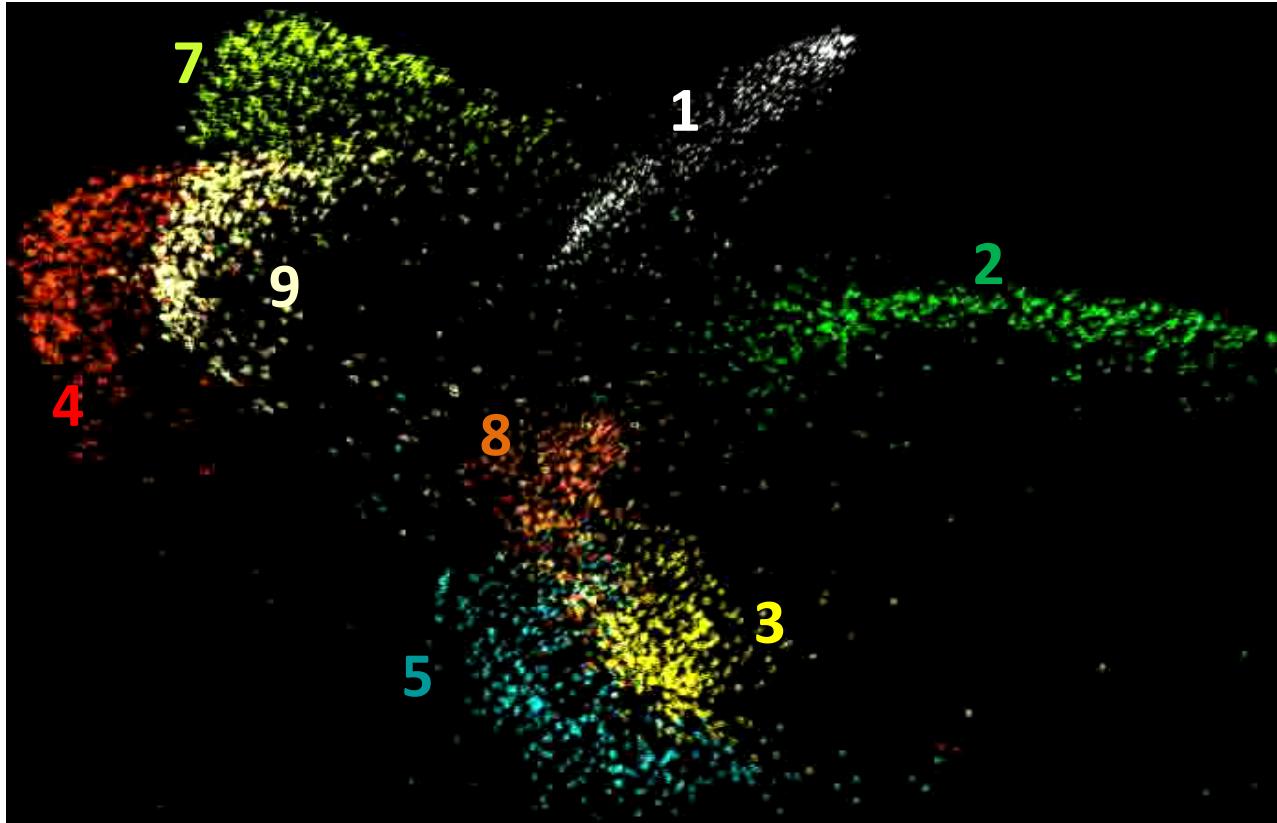
MACHINE LEARNING DEPARTMENT

Carnegie Mellon.
School of Computer Science

Parametric methods

- Assume some functional form (Gaussian, Bernoulli, Multinomial, logistic, Linear, Quadratic) for
 - $P(X_i|Y)$ and $P(Y)$ as in Naïve Bayes
 - $P(Y|X)$ as in Logistic, Linear and Nonlinear regression, SVM
- Estimate parameters ($\mu, \sigma^2, \theta, w, \beta$) using MLE/MAP and plug in
- **Pro** – need few data points to learn parameters
- **Con** – Strong distributional assumptions, not satisfied in practice

Example



Hand-written digit images
projected as points on a two-dimensional (nonlinear) feature spaces

Non-Parametric methods

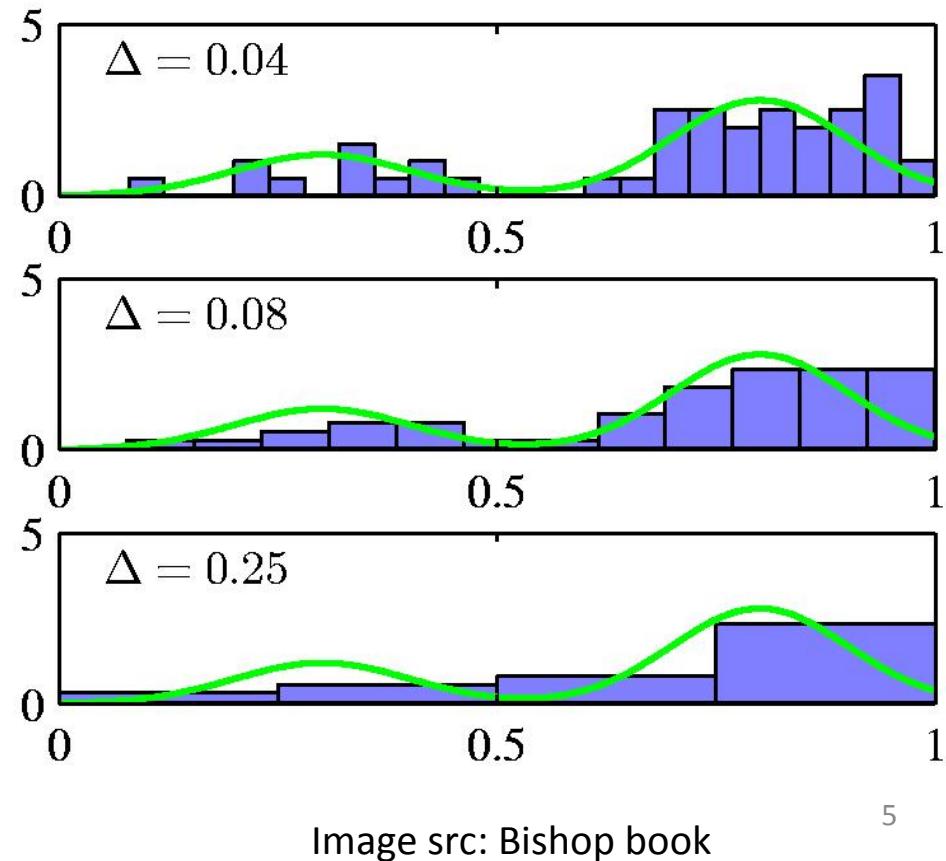
- Typically don't make any distributional assumptions
- As we have more data, we should be able to learn more complex models
- Let number of parameters scale with number of training data
- Today, we will see some nonparametric methods for
 - Density estimation
 - Classification
 - Regression

Histogram density estimate

Partition the feature space into distinct bins with widths Δ_i and count the number of observations, n_i , in each bin.

$$\hat{p}(x) = \frac{n_i}{n\Delta_i} \mathbf{1}_{x \in \text{Bin}_i}$$

- Often, the same width is used for all bins, $\Delta_i = \Delta$.
- Δ acts as a smoothing parameter.

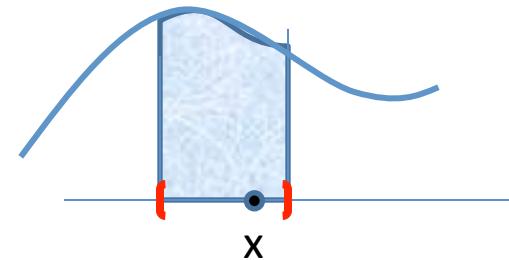


Effect of histogram bin width

$$\hat{p}(x) = \frac{n_i}{n\Delta} \mathbf{1}_{x \in \text{Bin}_i}$$

$$\# \text{ bins} = 1/\Delta$$

$$\hat{p}(x) = \frac{1}{\Delta} \frac{\sum_{j=1}^n \mathbf{1}_{X_j \in \text{Bin}_x}}{n}$$



Bias of histogram density estimate:

$$\mathbb{E}[\hat{p}(x)] = \frac{1}{\Delta} P(X \in \text{Bin}_x) = \frac{1}{\Delta} \int_{z \in \text{Bin}_x} p(z) dz \approx \frac{p(x)\Delta}{\Delta} = p(x)$$

**Assuming density it roughly constant in each bin
(holds true if Δ is small)**

Bias – Variance tradeoff

$$|\hat{p}(x) - p(x)| = |\hat{p}(x) - \mathbb{E}[\hat{p}(x)] + \mathbb{E}[\hat{p}(x)] - p(x)|$$

A horizontal blue bracket spans the entire expression $|\hat{p}(x) - p(x)|$. Below the bracket, the word "Variance" is centered under the first term $|\hat{p}(x) - \mathbb{E}[\hat{p}(x)]|$, and the word "Bias" is centered under the second term $|\mathbb{E}[\hat{p}(x)] - p(x)|$.

Bias – how close is the mean of estimate to the truth

Variance – how much does the estimate vary around mean

- Choice of bin-width Δ or #bins $\# \text{ bins} = 1/\Delta$
 - $\mathbb{E}[\hat{p}(x)] \approx p(x)$ if Δ is small ($p(x)$ approx constant per bin)
 - $\mathbb{E}[\hat{p}(x)] \approx \hat{p}(x)$ if Δ is large (more data per bin,
stable estimate)

Small Δ , large #bins “**Small bias, Large variance**”

Large Δ , small #bins “**Large bias, Small variance**”

Choice of #bins

$$\hat{p}(x) = \frac{n_i}{n\Delta} \mathbf{1}_{x \in \text{Bin}_i}$$

$$\# \text{ bins} = 1/\Delta$$

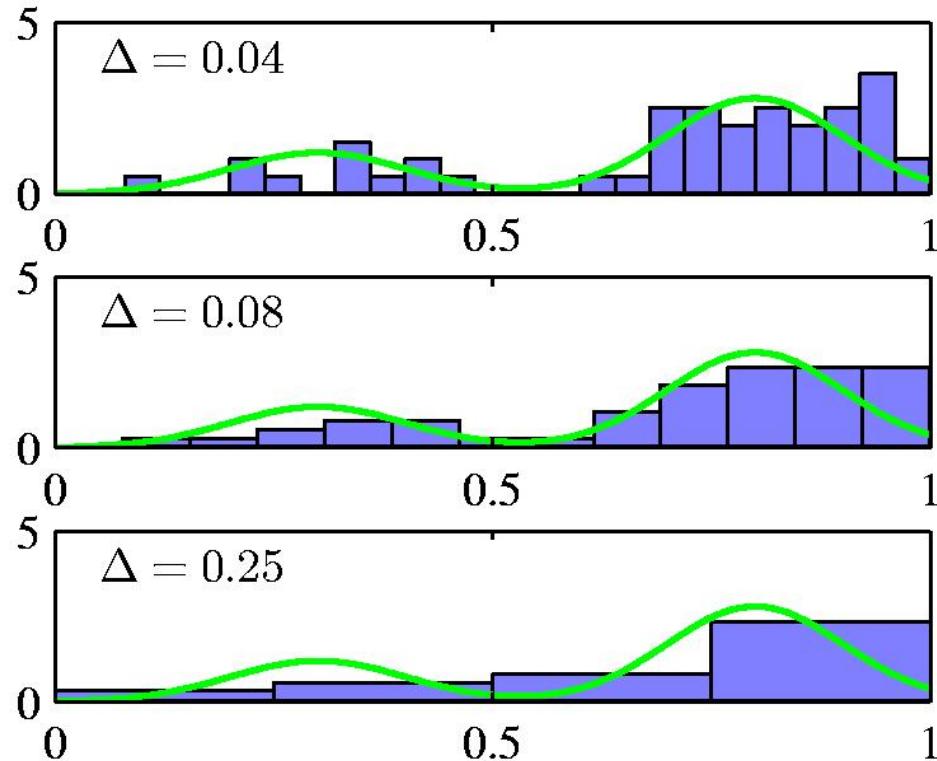


Image src: Bishop book

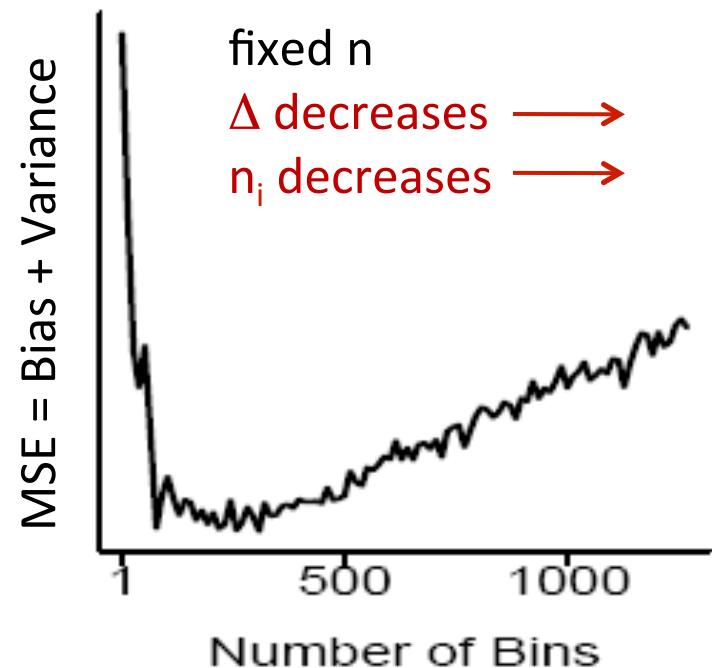


Image src: Larry book

Histogram as MLE

- Underlying model – density is constant on each bin
Parameters p_j : density in bin j

Note $\sum_j p_j = 1/\Delta$ since $\int p(x)dx = 1$

- Maximize likelihood of data under probability model with parameters p_j

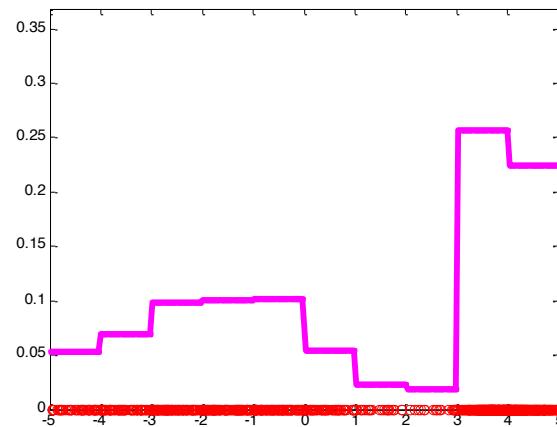
$$\hat{p}(x) = \arg \max_{\{p_j\}} P(X_1, \dots, X_n; \{p_j\}_{j=1}^{1/\Delta}) \quad \text{s.t.} \quad \sum_j p_j = 1/\Delta$$

- Show that histogram density estimate is MLE under this model – HW/Recitation

Kernel density estimate

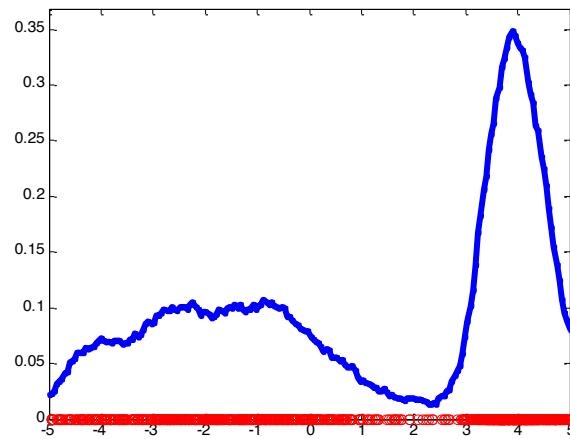
- Histogram – blocky estimate

$$\hat{p}(x) = \frac{1}{\Delta} \frac{\sum_{j=1}^n \mathbf{1}_{X_j \in \text{Bin}_x}}{n}$$



- Kernel density estimate aka “Parzen/moving window method”

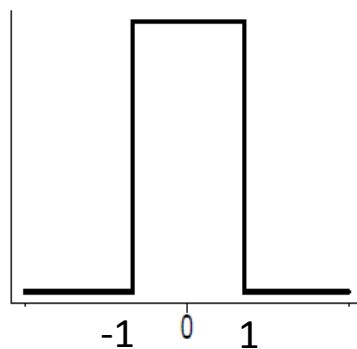
$$\hat{p}(x) = \frac{1}{\Delta} \frac{\sum_{j=1}^n \mathbf{1}_{||X_j - x|| \leq \Delta}}{n}$$



Kernel density estimate

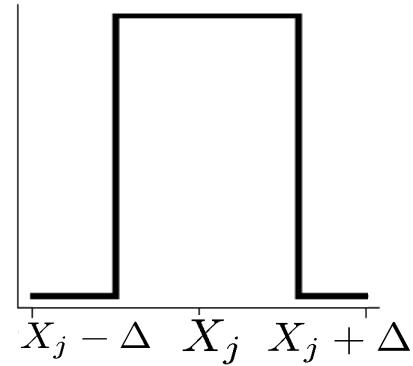
- $\hat{p}(x) = \frac{1}{\Delta} \frac{\sum_{j=1}^n K\left(\frac{X_j - x}{\Delta}\right)}{n}$ more generally

$$K\left(\frac{X_j - x}{\Delta}\right)$$



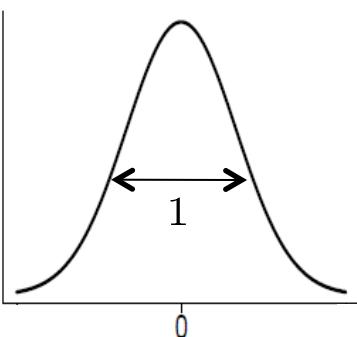
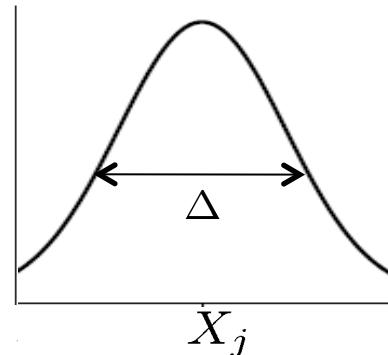
boxcar kernel :

$$K(x) = \frac{1}{2} I(x),$$



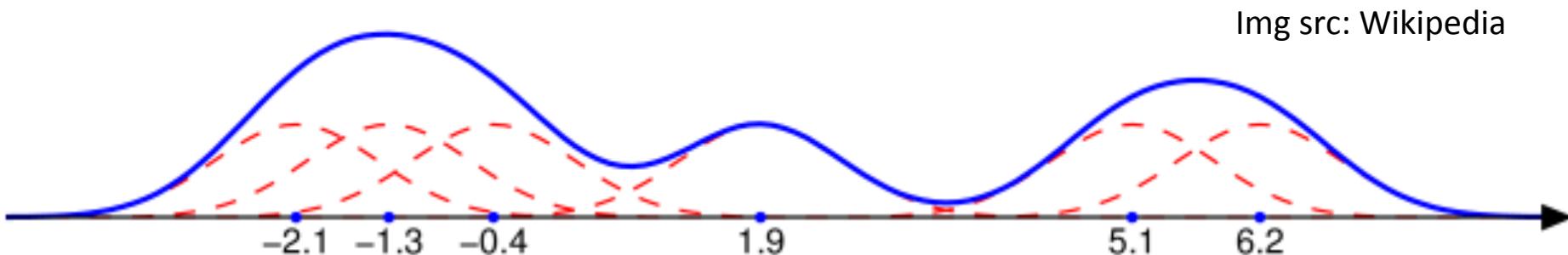
Gaussian kernel :

$$K(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$



Kernel density estimation

- Place small "bumps" at each data point, determined by the kernel function.
- The estimator consists of a (normalized) "sum of bumps".



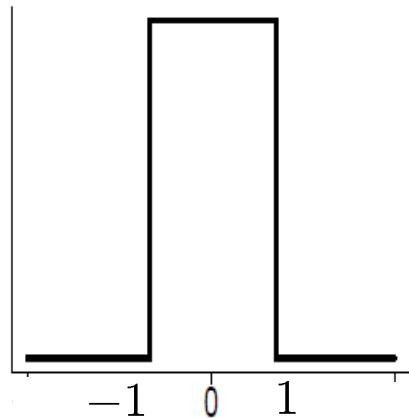
Gaussian bumps (red) around six data points and their sum (blue)

- Note that where the points are denser the density estimate will have higher values.

Kernels

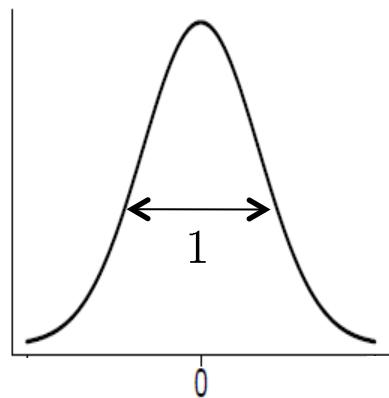
boxcar kernel :

$$K(x) = \frac{1}{2}I(x),$$



Gaussian kernel :

$$K(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$



Any kernel function that satisfies

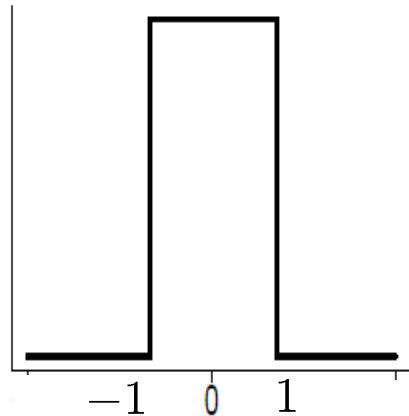
$$K(x) \geq 0,$$

$$\int K(x)dx = 1$$

Kernels

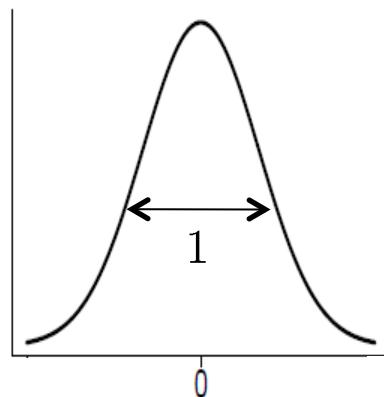
boxcar kernel :

$$K(x) = \frac{1}{2}I(x),$$



Gaussian kernel :

$$K(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$



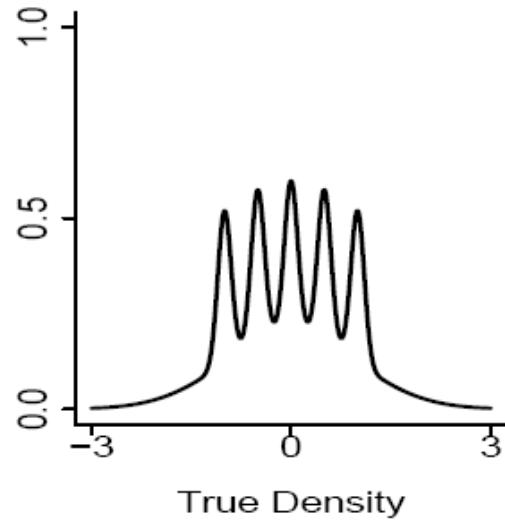
Finite support

- only need local points to compute estimate

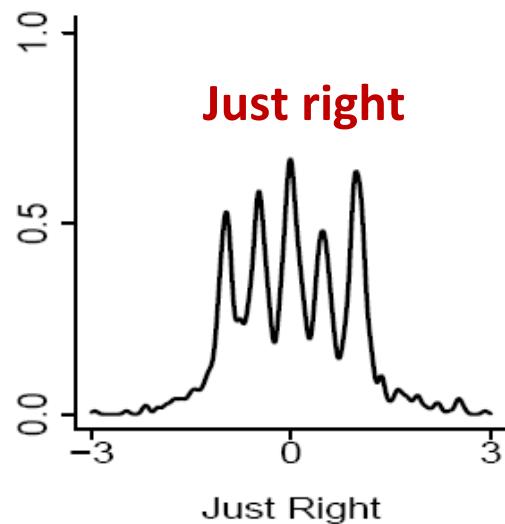
Infinite support

- need all points to compute estimate
- But quite popular since smoother

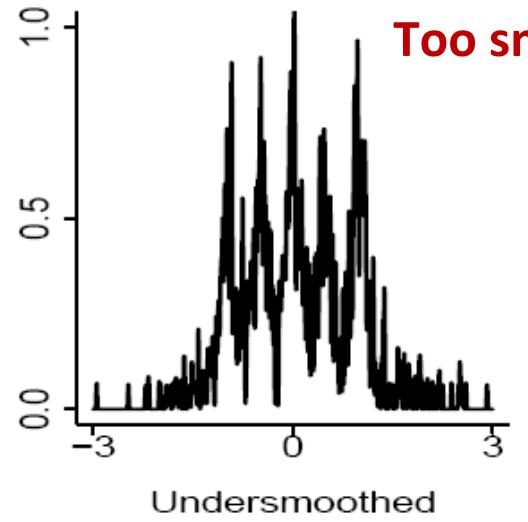
Choice of kernel bandwidth



True Density



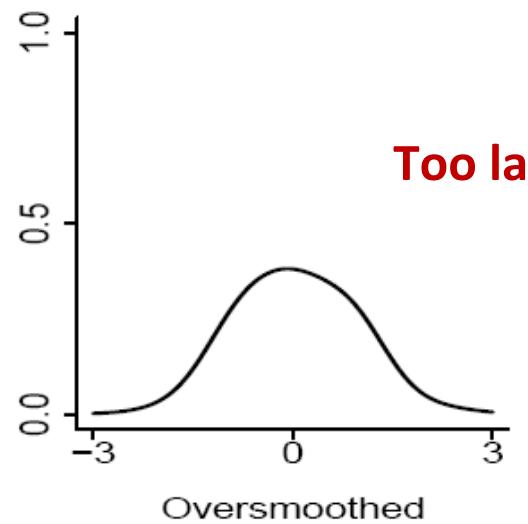
Just Right



Undersmoothed

Too small

Image Source:
Larry's book – All
of Nonparametric
Statistics

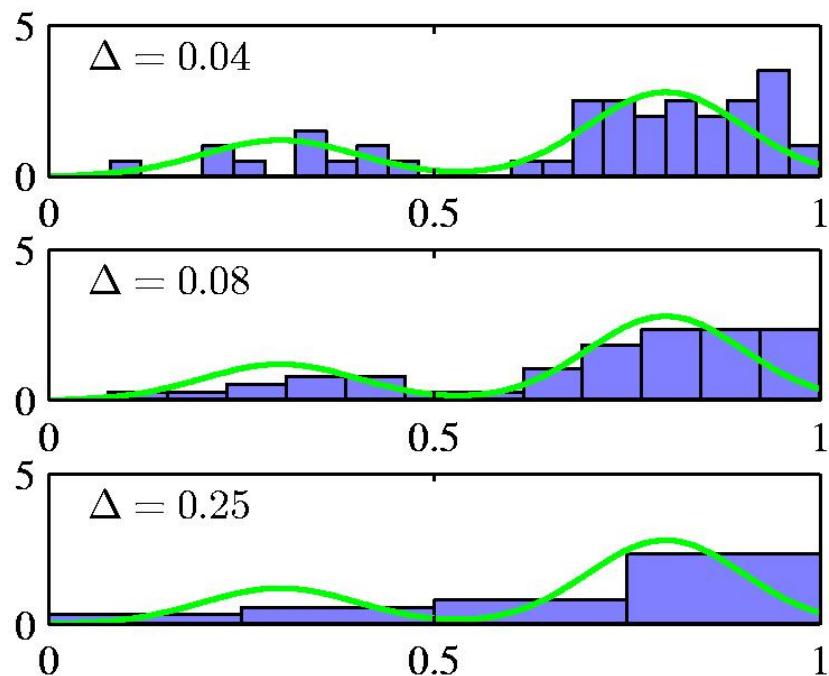
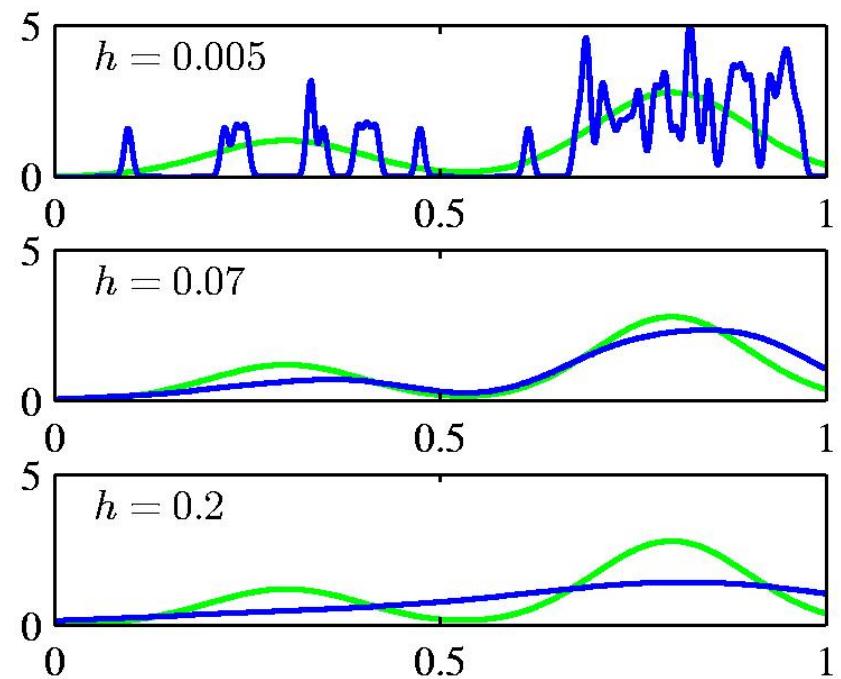


Oversmoothed

Too large

Bart-Simpson
Density

Histograms vs. Kernel density estimation



$\Delta = h$ acts as a smoother.

k-NN (Nearest Neighbor) density estimation

- Histogram

$$\hat{p}(x) = \frac{n_i}{n\Delta} \mathbf{1}_{x \in \text{Bin}_i}$$

- Kernel density est

$$\hat{p}(x) = \frac{n_x}{n\Delta}$$

Fix Δ , estimate number of points within Δ of x (n_i or n_x) from data

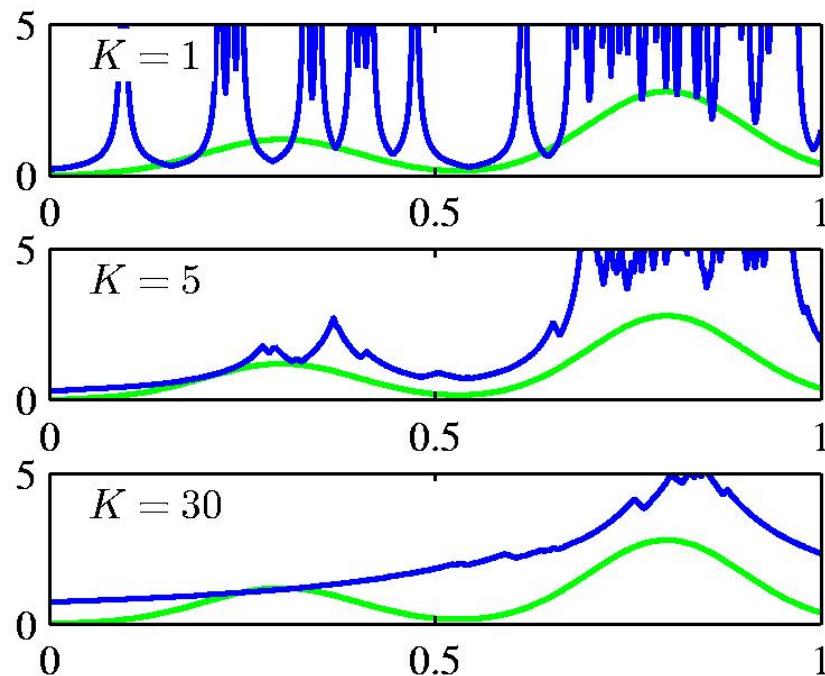
Fix $n_x = k$, estimate Δ from data (volume of ball around x that contains k training pts)

- k-NN density est

$$\hat{p}(x) = \frac{k}{n\Delta_{k,x}}$$

k-NN density estimation

$$\hat{p}(x) = \frac{k}{n\Delta_{k,x}}$$



k acts as a smoother.

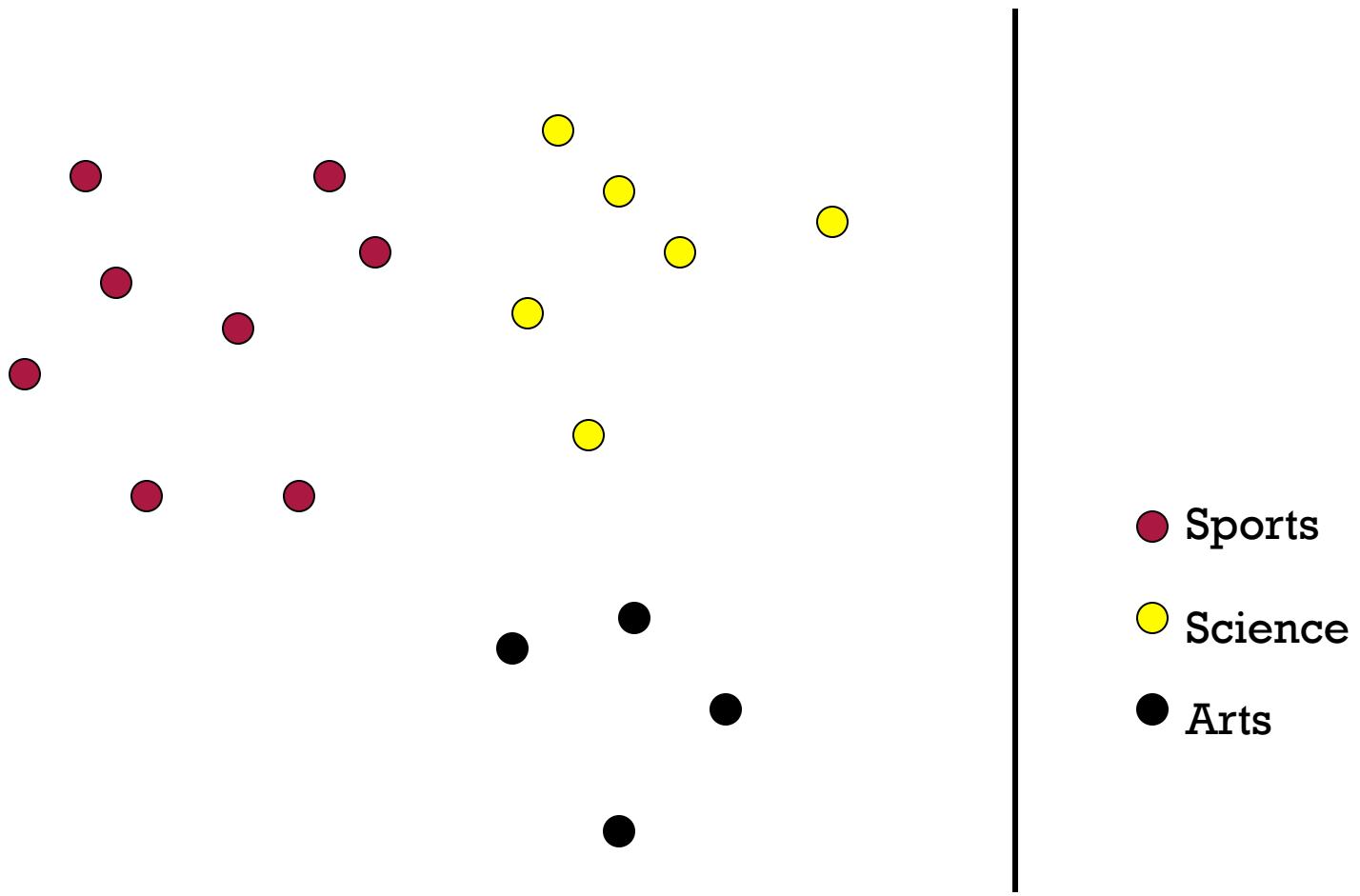
Not very popular for density estimation – spiked estimates

But a related version
for classification quite popular

...

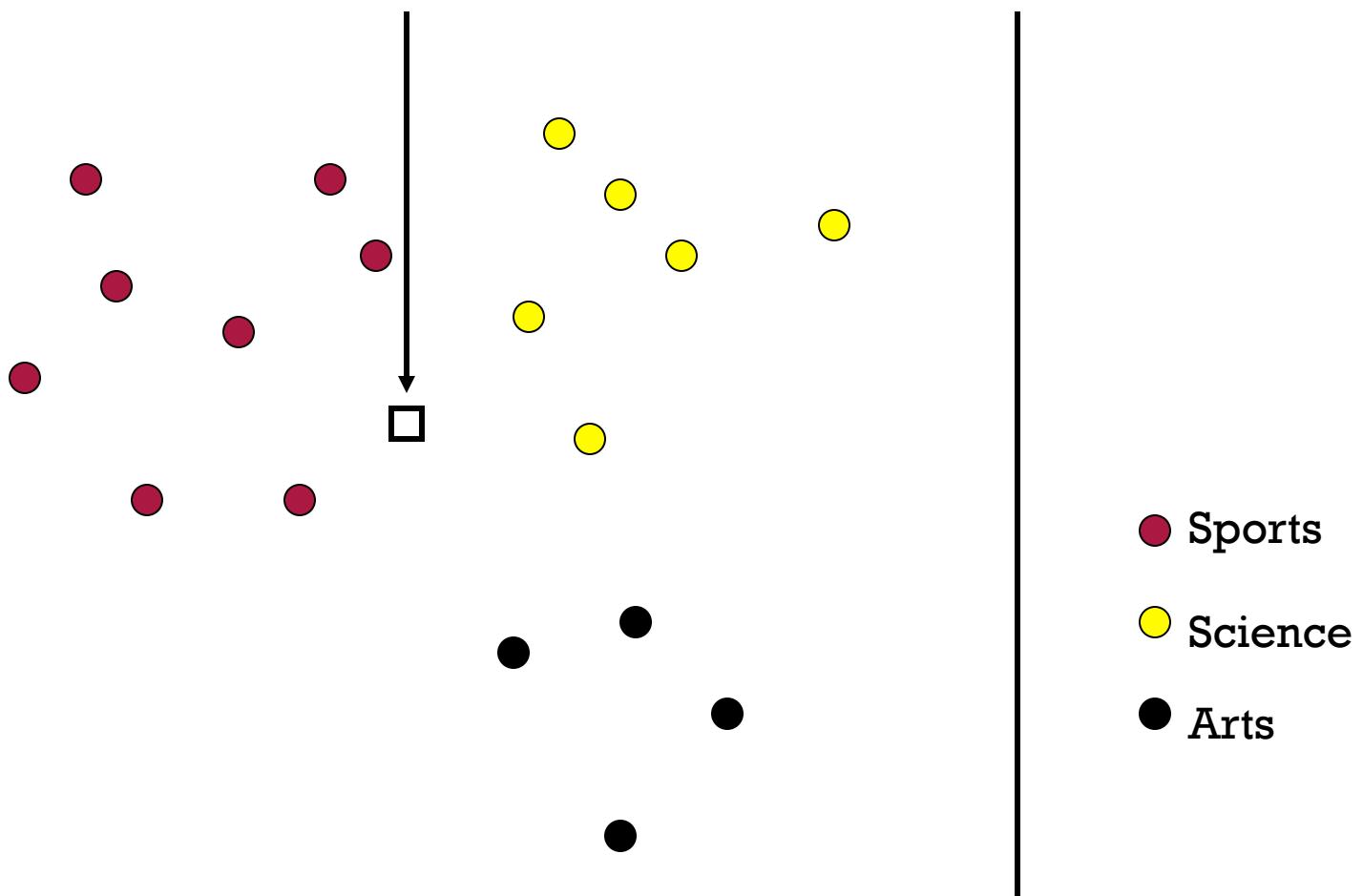
From
Density estimation
to
Classification

k-NN classifier

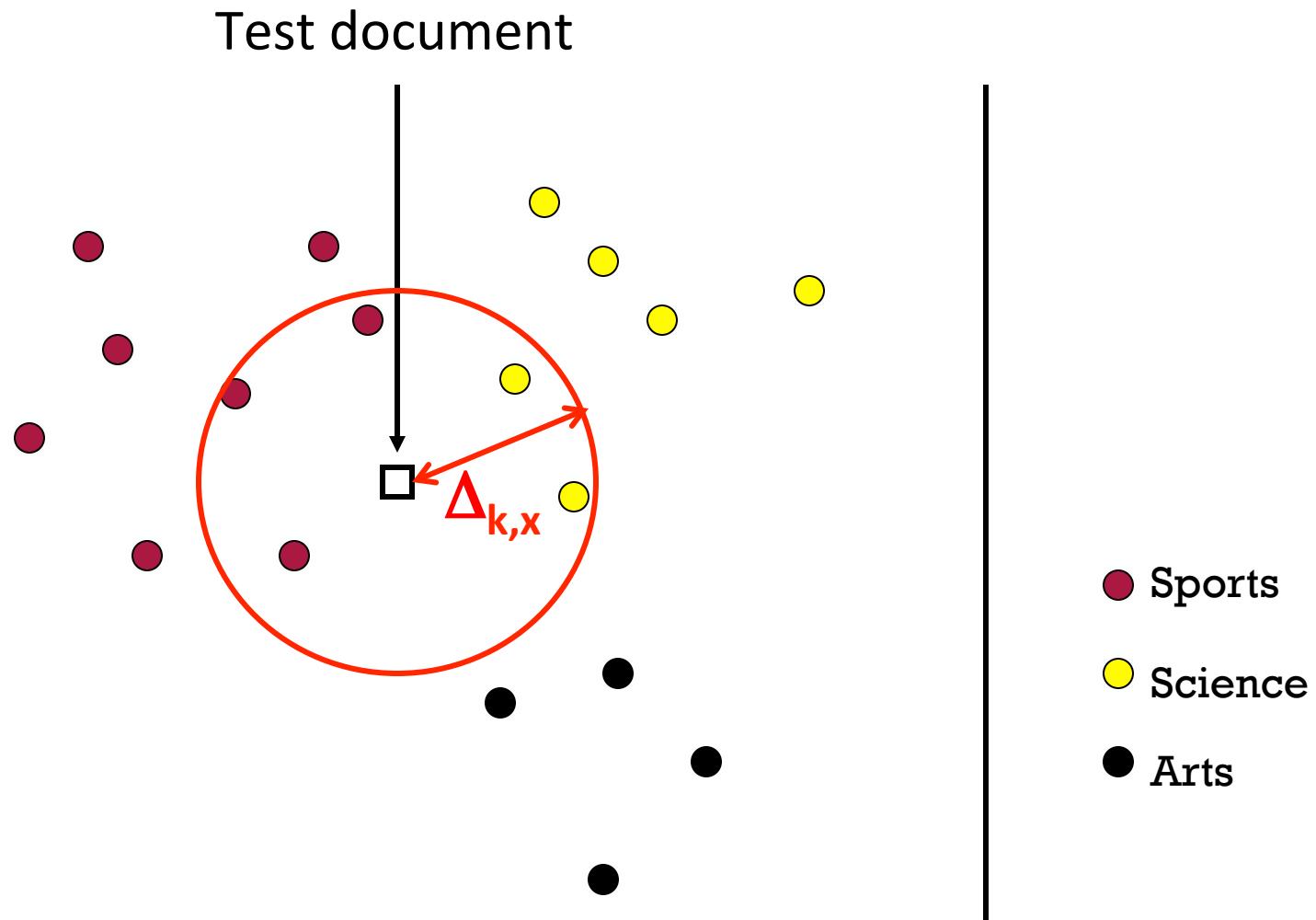


k-NN classifier

Test document



k-NN classifier (k=5)

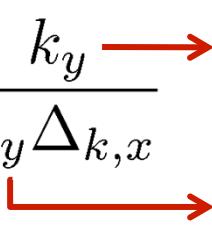


What should we predict? ... Average? Majority? Why?

k-NN classifier

- Optimal Classifier:
$$\begin{aligned} f^*(x) &= \arg \max_y P(y|x) \\ &= \arg \max_y p(x|y)P(y) \end{aligned}$$
- k-NN Classifier:
$$\begin{aligned} \hat{f}_{kNN}(x) &= \arg \max_y \hat{p}_{kNN}(x|y)\hat{P}(y) \\ &= \arg \max_y k_y \end{aligned}$$

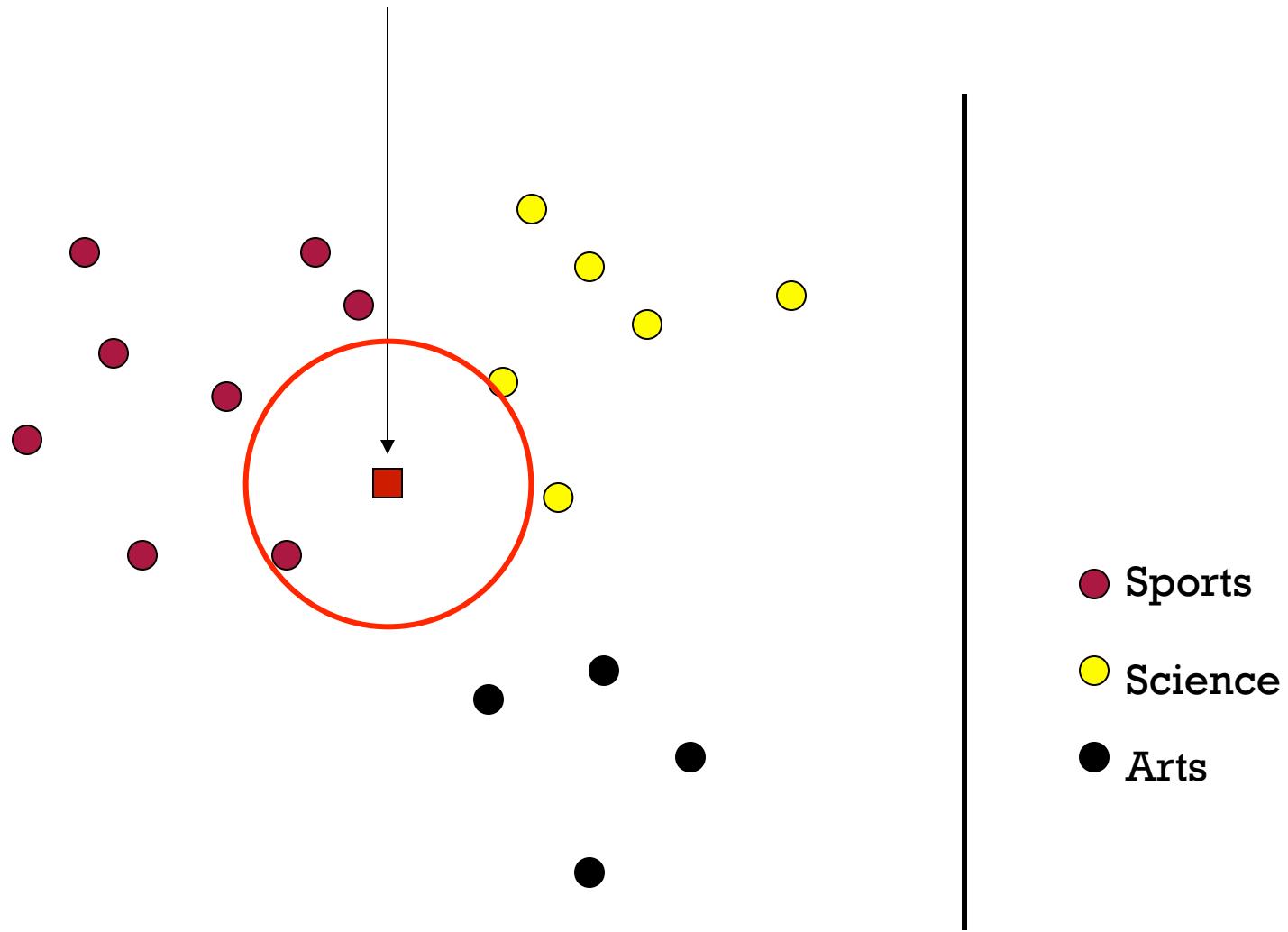
$$\hat{p}_{kNN}(x|y) = \frac{k_y}{n_y \Delta_{k,x}} \quad \begin{array}{l} \text{# training pts of class y} \\ \text{that lie within } \Delta_k \text{ ball} \end{array} \quad \sum_y k_y = k$$



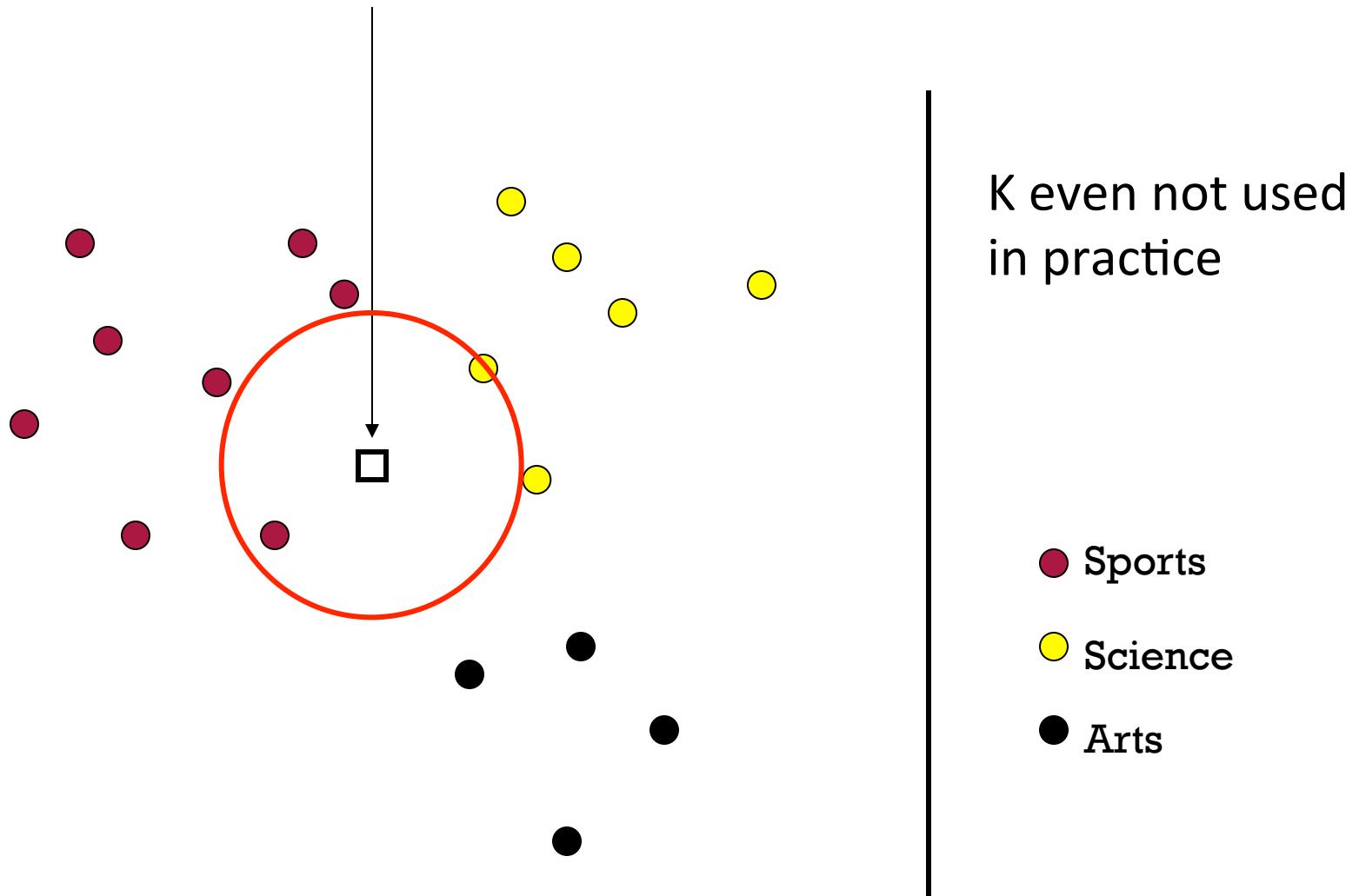
total training pts of class y

$$\hat{P}(y) = \frac{n_y}{n}$$

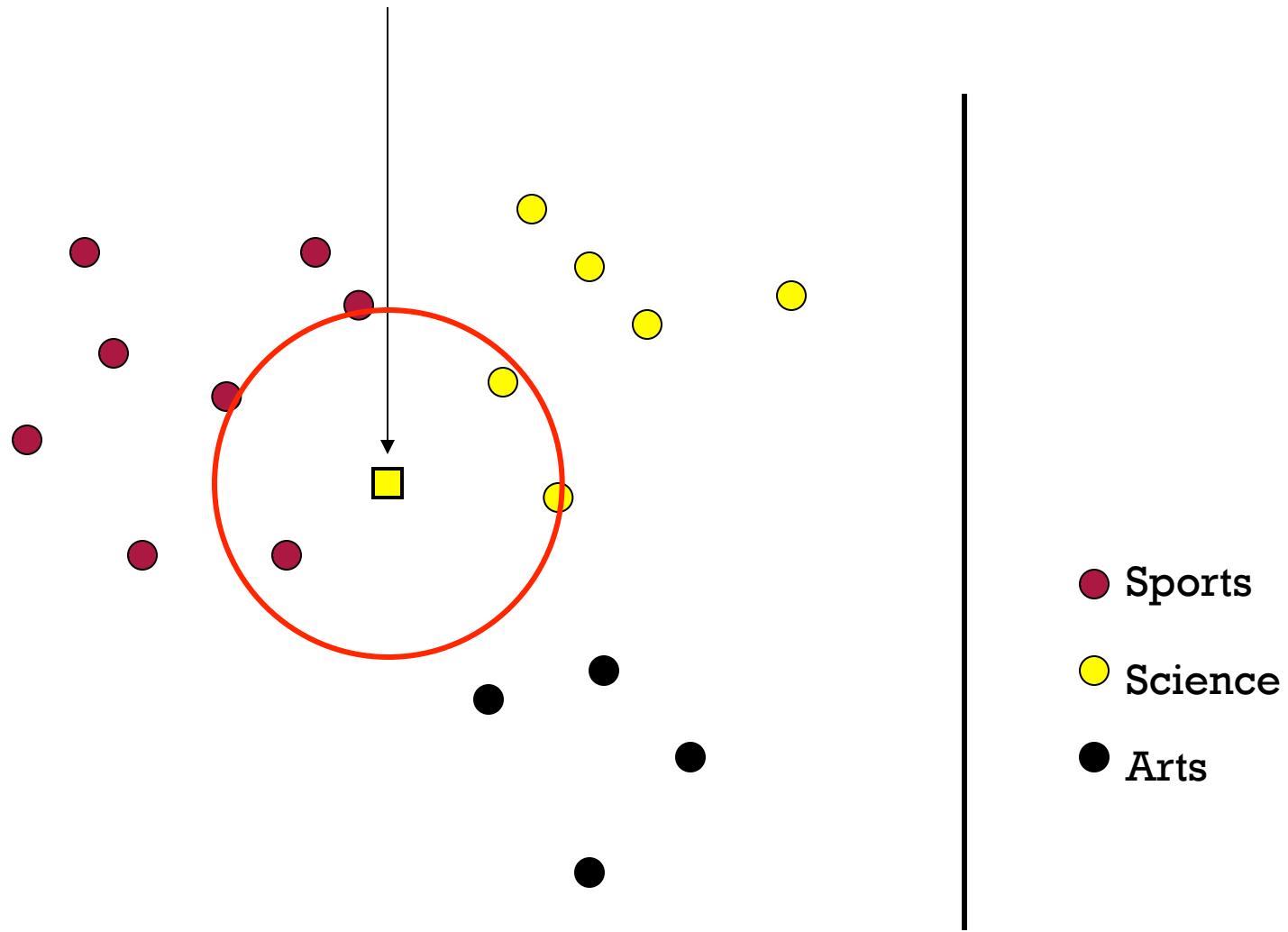
1-Nearest Neighbor (kNN) classifier



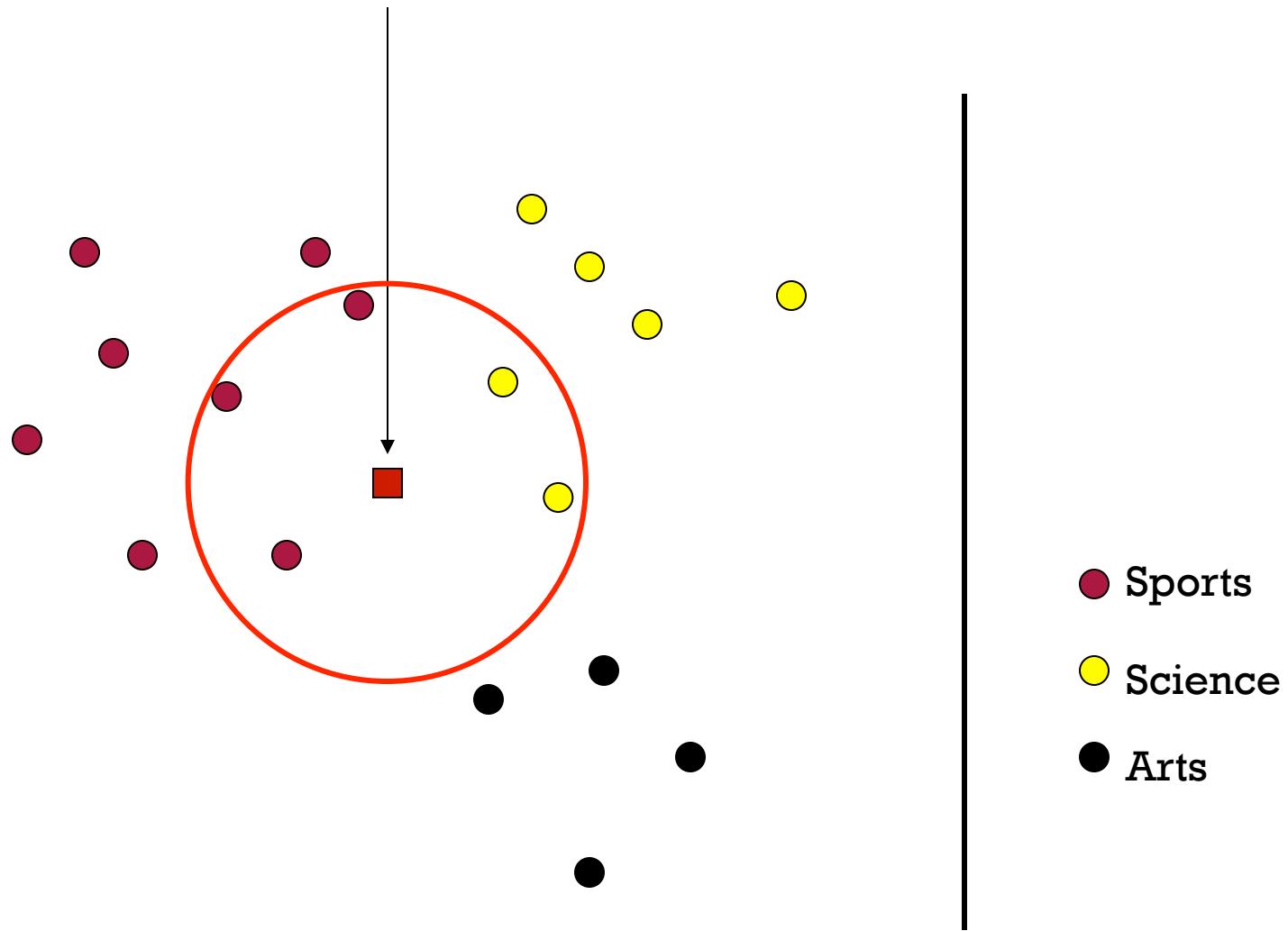
2-Nearest Neighbor (kNN) classifier



3-Nearest Neighbor (kNN) classifier



5-Nearest Neighbor (kNN) classifier



What is the best K?

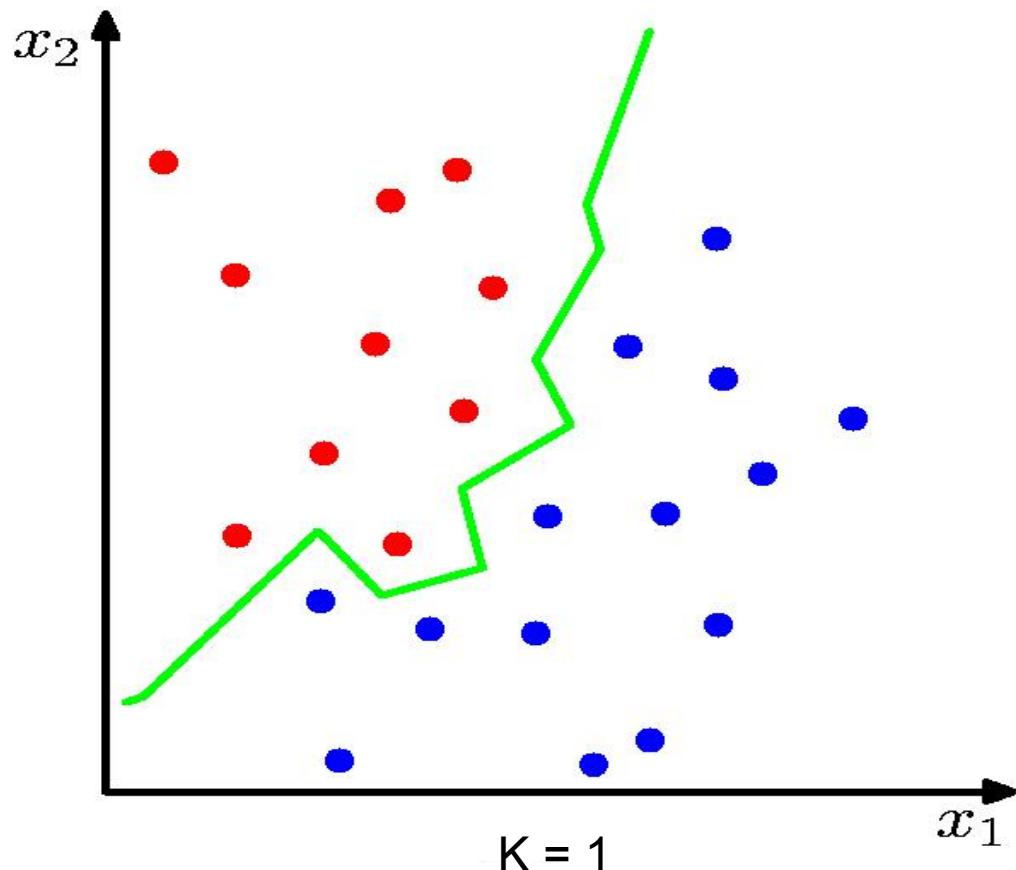
Bias-variance tradeoff

Larger K => predicted label is more stable

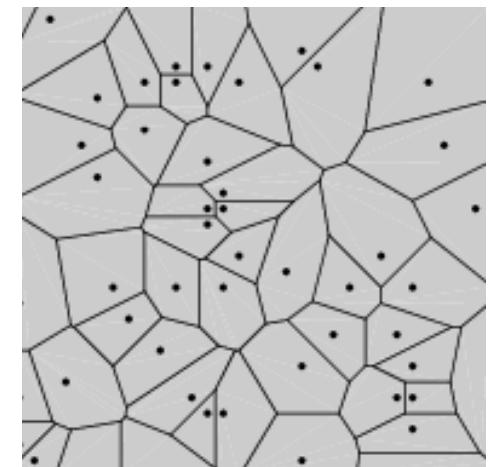
Smaller K => predicted label is more accurate

Similar to density estimation

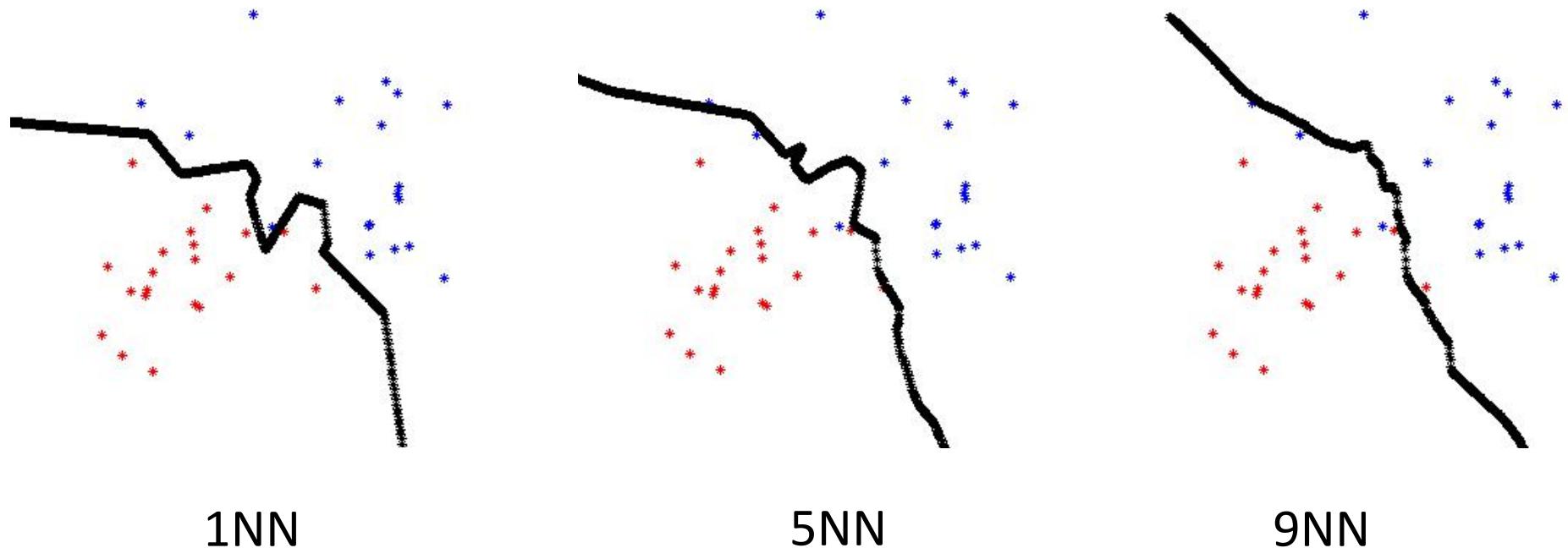
1-NN classifier – decision boundary



Voronoi
Diagram



k-NN classifier – decision boundary



- K acts as a smoother (Bias-variance tradeoff)

Case Study: kNN for Web Classification

- Dataset
 - 20 News Groups (20 classes)
 - Download :(<http://people.csail.mit.edu/jrennie/20Newsgroups/>)
 - 61,118 words, 18,774 documents
 - Class labels descriptions

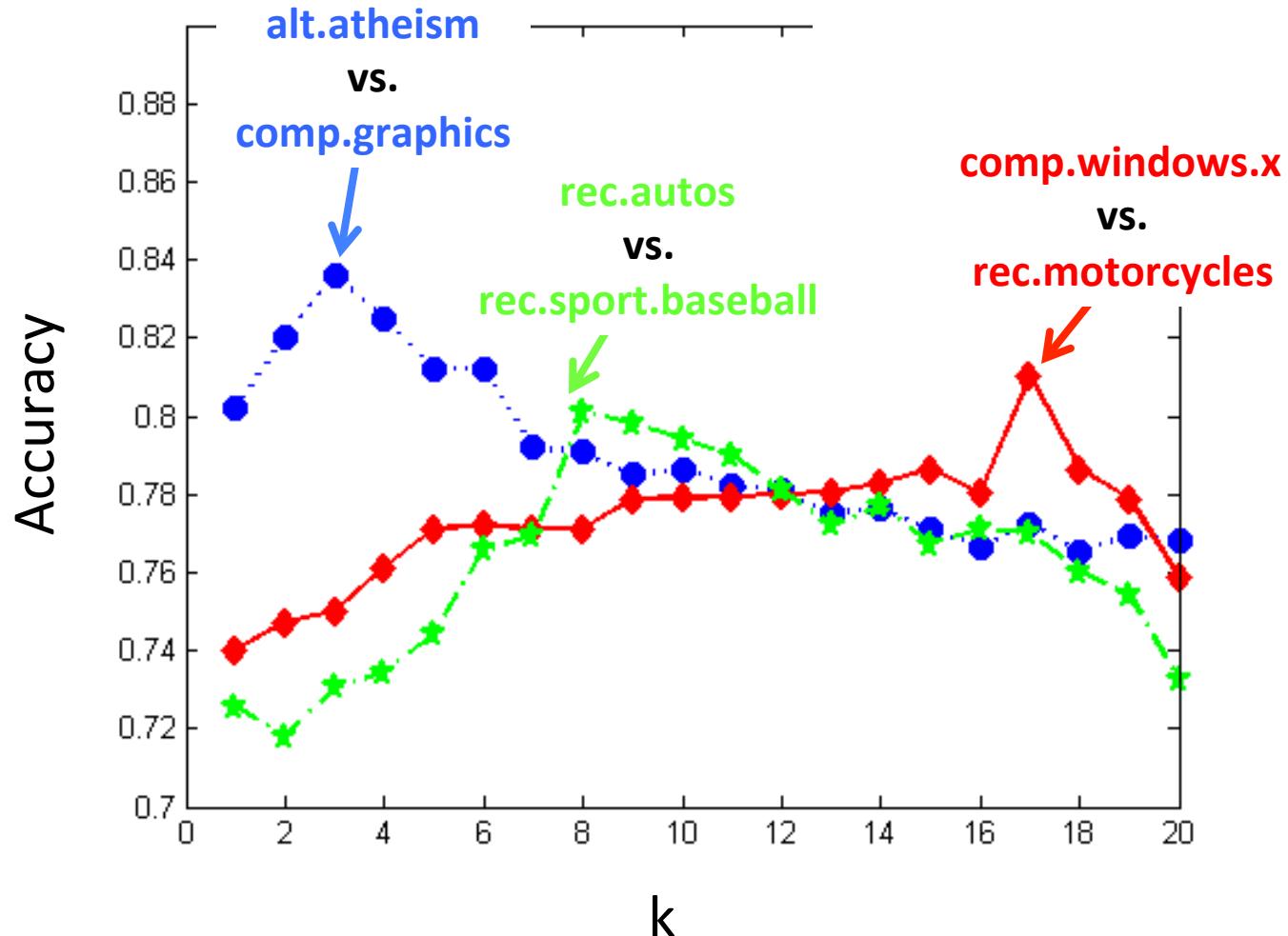
comp.graphics comp.os.ms-windows.misc comp.sys.ibm.pc.hardware comp.sys.mac.hardware comp.windows.x	rec.autos rec.motorcycles rec.sport.baseball rec.sport.hockey	sci.crypt sci.electronics sci.med sci.space
misc.forsale	talk.politics.misc talk.politics.guns talk.politics.mideast	talk.religion.misc alt.atheism soc.religion.christian

Experimental Setup

- Training/Test Sets:
 - 50%-50% randomly split.
 - 10 runs
 - report average results
- Evaluation Criteria:

$$Accuracy = \frac{\sum_{i \in \text{test set}} \mathbf{I}(\text{predict}_i = \text{true label}_i)}{\# \text{ of test samples}}$$

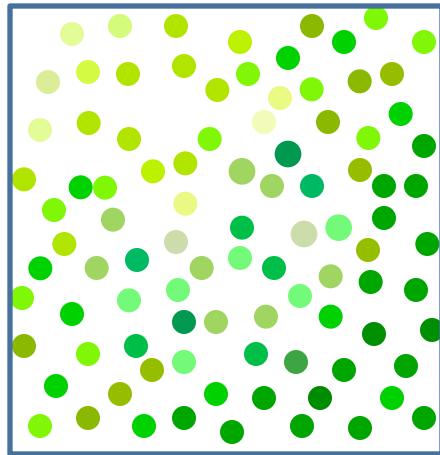
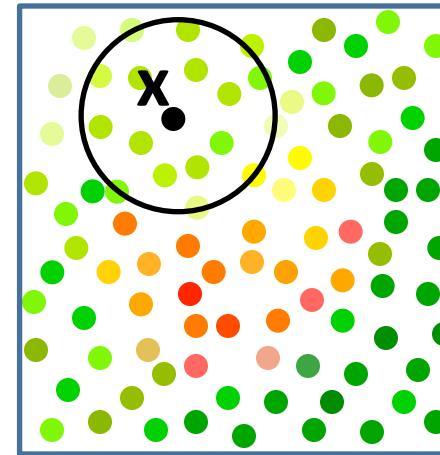
Results: Binary Classes



From
Classification
to
Regression

Temperature sensing

- What is the temperature in the room?
at location x ?



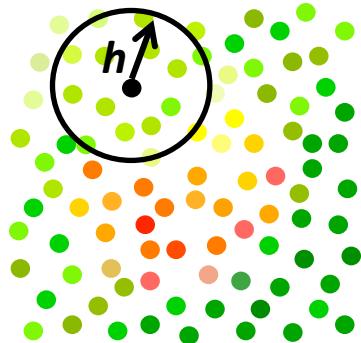
$$\hat{T} = \frac{1}{n} \sum_{i=1}^n Y_i$$

Average

$$\hat{T}(x) = \frac{\sum_{i=1}^n Y_i \mathbf{1}_{||X_i - x|| \leq h}}{\sum_{i=1}^n \mathbf{1}_{||X_i - x|| \leq h}}$$

“Local” Average

Kernel Regression



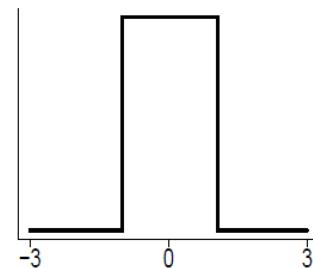
- Aka Local Regression
- Nadaraya-Watson Kernel Estimator

$$\hat{f}_n(X) = \sum_{i=1}^n w_i Y_i \text{ Where } w_i(X) = \frac{K\left(\frac{X-X_i}{h}\right)}{\sum_{i=1}^n K\left(\frac{X-X_i}{h}\right)}$$

- Weight each training point based on distance to test point
- Boxcar kernel yields local average

boxcar kernel :

$$K(x) = \frac{1}{2}I(x),$$

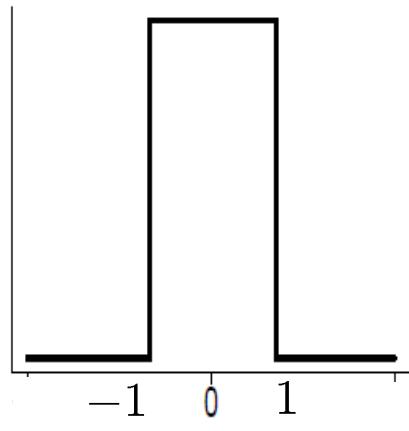


Kernels

$$K\left(\frac{X_j - x}{\Delta}\right)$$

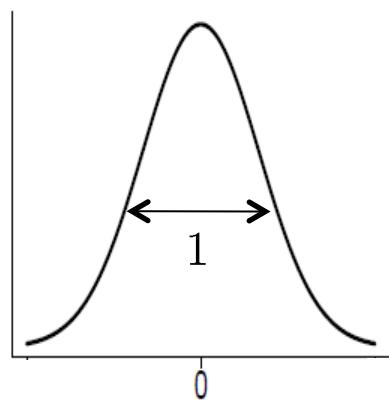
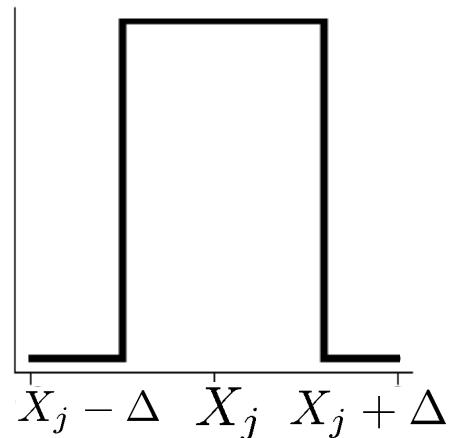
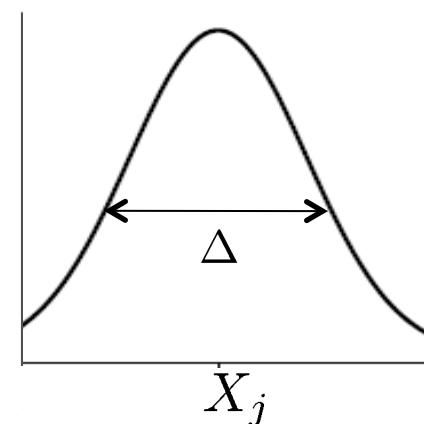
boxcar kernel :

$$K(x) = \frac{1}{2}I(x),$$



Gaussian kernel :

$$K(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$



Choice of kernel bandwidth h

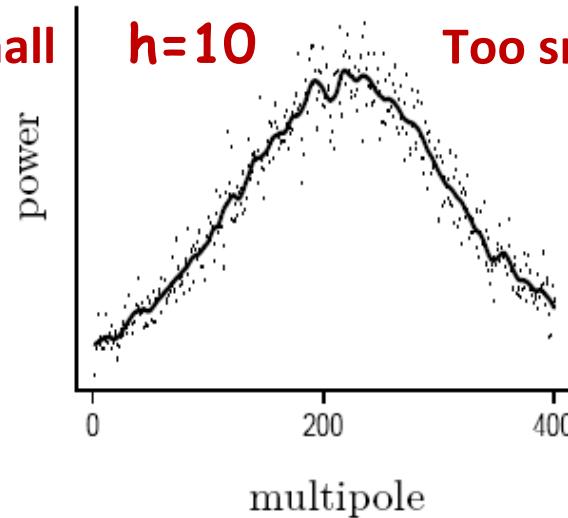
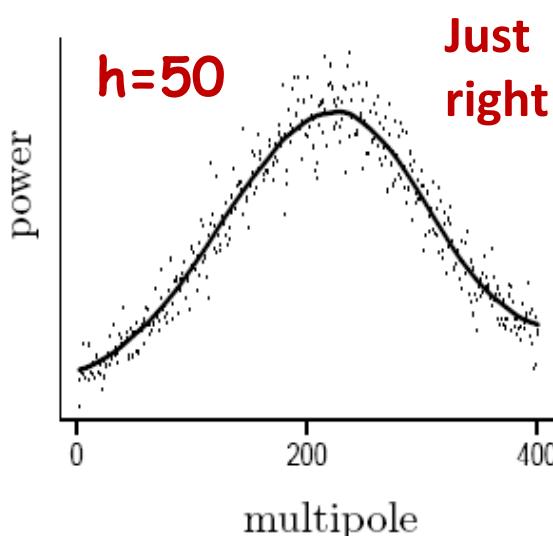
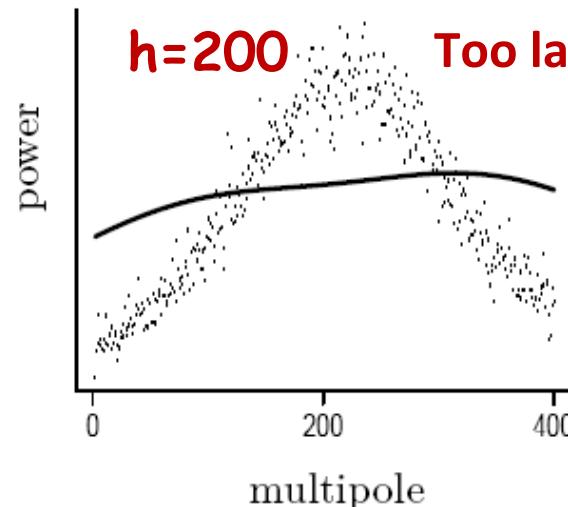


Image Source:
Larry's book – All
of Nonparametric
Statistics



Choice of kernel is
not that important

Kernel Regression as Weighted Least Squares

$$\min_f \sum_{i=1}^n w_i (f(X_i) - Y_i)^2 \quad w_i(X) = \frac{K\left(\frac{X-X_i}{h}\right)}{\sum_{i=1}^n K\left(\frac{X-X_i}{h}\right)}$$

Weighted Least Squares

Kernel regression corresponds to locally constant estimator obtained from (locally) weighted least squares

i.e. set $f(X_i) = \beta$ (a constant)

Kernel Regression as Weighted Least Squares

set $f(X_i) = \beta$ (a constant)

$$\min_{\beta} \sum_{i=1}^n w_i (\beta - Y_i)^2$$

constant

$$w_i(X) = \frac{K\left(\frac{X-X_i}{h}\right)}{\sum_{i=1}^n K\left(\frac{X-X_i}{h}\right)}$$

$$\frac{\partial J(\beta)}{\partial \beta} = 2 \sum_{i=1}^n w_i (\beta - Y_i) = 0$$

Notice that $\sum_{i=1}^n w_i = 1$

$$\Rightarrow \hat{f}_n(X) = \hat{\beta} = \sum_{i=1}^n w_i Y_i$$

Local Linear/Polynomial Regression

$$\min_f \sum_{i=1}^n w_i (f(X_i) - Y_i)^2 \quad w_i(X) = \frac{K\left(\frac{X-X_i}{h}\right)}{\sum_{i=1}^n K\left(\frac{X-X_i}{h}\right)}$$

Weighted Least Squares

Local Polynomial regression corresponds to locally polynomial estimator obtained from (locally) weighted least squares

$$f(X_i) = \beta_0 + \beta_1(X_i - X) + \frac{\beta_2}{2!}(X_i - X)^2 + \dots + \frac{\beta_p}{p!}(X_i - X)^p$$

i.e. set

(local polynomial of degree p around X)

Summary

- Instance based/non-parametric approaches

Four things make a memory based learner:

1. *A distance metric, $dist(x, X_i)$*
Euclidean (and many more)
2. *How many nearby neighbors/radius to look at?*
 $k, \Delta/h$
3. *A weighting function (optional)*
W based on kernel K
4. *How to fit with the local points?*
Average, Majority vote, Weighted average, Poly fit

Summary

- Parametric vs Nonparametric approaches
 - Nonparametric models place very mild assumptions on the data distribution and provide good models for complex data
Parametric models rely on very strong (simplistic) distributional assumptions
 - Nonparametric models (not histograms) requires storing and computing with the entire data set.
Parametric models, once fitted, are much more efficient in terms of storage and computation.

What you should know...

- Histograms, Kernel density estimation
 - Effect of bin width/ kernel bandwidth
 - Bias-variance tradeoff
- K-NN classifier
 - Nonlinear decision boundaries
- Kernel (local) regression
 - Interpretation as weighted least squares
 - Local constant/linear/polynomial regression

Bias-variance tradeoff

- Simulations