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Parametric	
  methods	
  

•  Assume	
  some	
  func$onal	
  form	
  (Gaussian,	
  Bernoulli,	
  
Mul$nomial,	
  logis$c,	
  Linear,	
  Quadra$c)	
  for	
  
–  P(Xi|Y)	
  and	
  P(Y)	
  as	
  in	
  Naïve	
  Bayes	
  
–  P(Y|X)	
  as	
  in	
  Logis$c,	
  Linear	
  and	
  Nonlinear	
  regression,	
  SVM	
  

	
  

•  Es$mate	
  parameters	
  (µ,σ2,θ,w,β)	
  using	
  MLE/MAP	
  
and	
  plug	
  in	
  

•  Pro	
  –	
  need	
  few	
  data	
  points	
  to	
  learn	
  parameters	
  
•  Con	
  –	
  Strong	
  distribu$onal	
  assump$ons,	
  not	
  sa$sfied	
  
in	
  prac$ce	
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Example	
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1	
  

Hand-­‐wri[en	
  digit	
  images	
  	
  
projected	
  as	
  points	
  on	
  a	
  two-­‐dimensional	
  (nonlinear)	
  feature	
  spaces	
  



Non-­‐Parametric	
  methods	
  

•  Typically	
  don’t	
  make	
  any	
  distribu$onal	
  assump$ons	
  
•  As	
  we	
  have	
  more	
  data,	
  we	
  should	
  be	
  able	
  to	
  learn	
  
more	
  complex	
  models	
  

•  Let	
  number	
  of	
  parameters	
  scale	
  with	
  number	
  of	
  
training	
  data	
  	
  

•  Today,	
  we	
  will	
  see	
  some	
  nonparametric	
  methods	
  for	
  
–  Density	
  es$ma$on	
  
–  Classifica$on	
  
–  Regression	
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Histogram	
  density	
  es4mate	
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Par$$on	
  the	
  feature	
  space	
  into	
  dis$nct	
  bins	
  with	
  widths	
  Δi	
  and	
  
count	
  the	
  number	
  of	
  observa$ons,	
  ni,	
  in	
  each	
  bin.	
  

•  Ocen,	
  the	
  same	
  width	
  is	
  	
  
	
  	
  	
  	
  	
  used	
  for	
  all	
  bins,	
  Δi	
  =	
  Δ.	
  
•  Δ acts	
  as	
  a	
  smoothing	
  	
  
	
  	
  	
  	
  	
  parameter.	
  

Image	
  src:	
  Bishop	
  book	
  



Effect	
  of	
  histogram	
  bin	
  width	
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#	
  bins	
  =	
  1/Δ	



Assuming	
  density	
  it	
  roughly	
  constant	
  in	
  each	
  bin	
  
(holds	
  true	
  if	
  Δ	
  is	
  small)	
  

Bias	
  of	
  histogram	
  density	
  es$mate:	
   x	
  



Bias	
  –	
  Variance	
  tradeoff	
  
	
  
	
  
	
  

Bias	
  –	
  how	
  close	
  is	
  the	
  mean	
  of	
  es$mate	
  to	
  the	
  truth	
  
Variance	
  –	
  how	
  much	
  does	
  the	
  es$mate	
  vary	
  around	
  mean	
  
	
  

•  Choice	
  of	
  bin-­‐width	
  Δ	
  or	
  #bins	
  

	
  

	
  

	
  	
  	
  Small	
  Δ,	
  large	
  #bins	
   	
   	
  “Small	
  bias,	
  Large	
  variance”	
  
	
  	
  	
  Large	
  Δ,	
  small	
  #bins	
   	
   	
  “Large	
  bias,	
  Small	
  variance”	
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#	
  bins	
  =	
  1/Δ	



(p(x) approx constant per bin) 

(more data per bin,  
   stable estimate) 

|p̂(x)� p(x)| = |p̂(x)� E[p̂(x)] + E[p̂(x)]� p(x)|

Bias	
  Variance	
  



Choice	
  of	
  #bins	
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Image	
  src:	
  Bishop	
  book	
  

#	
  bins	
  =	
  1/Δ	



Image	
  src:	
  Larry	
  book	
  

fixed	
  n	
  
Δ	
  decreases	
  
ni	
  decreases	
  

M
SE
	
  =
	
  B
ia
s	
  +

	
  V
ar
ia
nc
e	
  



Histogram	
  as	
  MLE	
  
•  Underlying	
  model	
  –	
  density	
  is	
  constant	
  on	
  each	
  bin	
  
	
  Parameters	
  pj	
  	
  :	
  	
  	
  density	
  in	
  bin	
  j	
  

	
  Note	
   	
   	
  	
  	
  	
  	
  since	
  	
  

•  Maximize	
  likelihood	
  of	
  data	
  under	
  probability	
  model	
  with	
  
parameters	
  pj	
  

•  Show	
  that	
  histogram	
  density	
  es$mate	
  is	
  MLE	
  under	
  this	
  
model	
  –	
  HW/Recita$on	
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max

{pj}
P (X1, . . . , Xn; {pj}1/�j=1 ) s.t.

X

j

pj = 1/�
p̂(x) = arg



•  Histogram	
  –	
  blocky	
  es$mate	
  

•  Kernel	
  density	
  es$mate	
  aka	
  “Parzen/moving	
  window	
  
method”	
  

Kernel	
  density	
  es4mate	
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•  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  more	
  generally	
  

Kernel	
  density	
  es4mate	
  

11	
  

-­‐1	
   1	
  



Kernel	
  density	
  es4ma4on	
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Gaussian	
  bumps	
  (red)	
  around	
  six	
  data	
  points	
  and	
  their	
  sum	
  (blue)	
  	
  

• 	
  	
  	
  Place	
  small	
  "bumps"	
  at	
  each	
  data	
  point,	
  determined	
  by	
  the	
  	
  	
  
	
  	
  	
  	
  kernel	
  func$on.	
  	
  
• 	
  	
  The	
  es$mator	
  consists	
  of	
  a	
  (normalized)	
  "sum	
  of	
  bumps”.	
  

• 	
  	
  	
  Note	
  that	
  where	
  the	
  points	
  are	
  denser	
  the	
  density	
  es$mate	
  	
  
	
  	
  	
  	
  	
  will	
  have	
  higher	
  values.	
  

Img	
  src:	
  Wikipedia	
  



Kernels	
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Any	
  kernel	
  
func$on	
  that	
  
sa$sfies	
  



Kernels	
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Finite	
  support	
  	
  
–	
  only	
  need	
  local	
  	
  
	
  	
  	
  points	
  to	
  compute	
  
	
  	
  	
  es$mate	
  

Infinite	
  support	
  
-­‐ 	
  need	
  all	
  points	
  to	
  
	
  	
  compute	
  es$mate	
  
-­‐ But	
  quite	
  popular	
  	
  
	
  	
  since	
  smoother	
  	
  
	
  



Choice	
  of	
  kernel	
  bandwidth	
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Image	
  Source:	
  	
  
Larry’s	
  book	
  –	
  All	
  	
  
of	
  Nonparametric	
  
Sta$s$cs	
  

Bart-Simpson  
Density 

Too	
  small	
  

Too	
  large	
  
Just	
  right	
  



Histograms	
  vs.	
  Kernel	
  density	
  
es4ma4on	
  

16	
  

Δ = h	
  acts	
  as	
  a	
  smoother.	
  



k-­‐NN	
  (Nearest	
  Neighbor)	
  density	
  
es4ma4on	
  

•  Histogram	
  

•  Kernel	
  density	
  est	
  
	
  

	
  	
  	
  	
  Fix	
  Δ,	
  es$mate	
  number	
  of	
  points	
  within	
  Δ	
  of	
  x	
  (ni	
  or	
  
nx)	
  from	
  data	
  

	
  

	
  Fix	
  nx=	
  k,	
  es$mate	
  Δ	
  from	
  data	
  (volume	
  of	
  ball	
  
around	
  x	
  that	
  contains	
  k	
  training	
  pts)	
  

•  k-­‐NN	
  density	
  est	
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k-­‐NN	
  density	
  es4ma4on	
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k	
  acts	
  as	
  a	
  smoother.	
  

Not	
  very	
  popular	
  for	
  density	
  
es$ma$on	
  –	
  spiked	
  es$mates	
  
	
  
But	
  a	
  related	
  version	
  
for	
  classifica$on	
  quite	
  popular	
  
…	
  



	
   	
  	
  
From  

Density estimation  
to  

Classification 
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k-­‐NN	
  classifier	
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Sports 

Science 

Arts 



k-­‐NN	
  classifier	
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Sports 

Science 

Arts 

Test	
  document	
  



k-­‐NN	
  classifier	
  (k=5)	
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Sports 

Science 

Arts 

Test	
  document	
  

What	
  should	
  we	
  predict?	
  … 	
  Average?	
  Majority?	
  Why?	
  

Δk,x	
  



k-­‐NN	
  classifier	
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•  Op$mal	
  Classifier:	
  

•  k-­‐NN	
  Classifier:	
  

# total training pts of class y 

# training pts of class y 
that lie within Δk ball 



1-­‐Nearest	
  Neighbor	
  (kNN)	
  classifier	
  	
  

Sports 

Science 

Arts 
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2-­‐Nearest	
  Neighbor	
  (kNN)	
  classifier	
  	
  

Sports 

Science 

Arts 
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K	
  even	
  not	
  used	
  
in	
  prac$ce	
  



3-­‐Nearest	
  Neighbor	
  (kNN)	
  classifier	
  	
  

Sports 

Science 

Arts 
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5-­‐Nearest	
  Neighbor	
  (kNN)	
  classifier	
  	
  

Sports 

Science 

Arts 
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What	
  is	
  the	
  best	
  K?	
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Bias-­‐variance	
  tradeoff	
  
	
  Larger	
  K	
  =>	
  predicted	
  label	
  is	
  more	
  stable	
  	
  
	
  Smaller	
  K	
  =>	
  predicted	
  label	
  is	
  more	
  accurate	
  	
  

	
  
Similar	
  to	
  density	
  es$ma$on	
  
	
  
	
  
	
  



1-­‐NN	
  classifier	
  –	
  decision	
  boundary	
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K = 1 

Voronoi	
  
Diagram	
  



k-­‐NN	
  classifier	
  –	
  decision	
  boundary	
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• 	
  K	
  acts	
  as	
  a	
  smoother	
  (Bias-­‐variance	
  tradeoff)	
  

1NN	
   5NN	
   9NN	
  



Case	
  Study:	
  
kNN	
  for	
  Web	
  Classifica4on	
  

•  Dataset	
  	
  
–  20	
  News	
  Groups	
  (20	
  classes)	
  
–  Download	
  :(h[p://people.csail.mit.edu/jrennie/20Newsgroups/)	
  
–  61,118	
  words,	
  18,774	
  documents	
  
–  Class	
  labels	
  descrip$ons	
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Experimental	
  Setup	
  

•  Training/Test	
  Sets:	
  	
  
–  50%-­‐50%	
  randomly	
  split.	
  	
  
–  10	
  runs	
  
–  report	
  average	
  results	
  

•  Evalua$on	
  Criteria:	
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Results:	
  Binary	
  Classes	
  
alt.atheism	
  	
  

vs.	
  	
  
comp.graphics	
  

rec.autos	
  	
  
vs.	
  	
  

rec.sport.baseball	
  

	
  
	
  
	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

comp.windows.x	
  	
  
vs.	
  	
  

rec.motorcycles	
  

k	
  

Ac
cu
ra
cy
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From  

Classification 
to  

Regression 
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Temperature	
  sensing	
  
•  What	
  is	
  the	
  temperature	
  	
  
	
  in	
  the	
  room? 	
   	
   	
  	
  

	
  
	
  

35	
  
Average “Local” Average 

at	
  loca$on	
  x?	
  

x	
  



Kernel	
  Regression	
  

•  Aka	
  Local	
  Regression	
  
•  Nadaraya-­‐Watson	
  Kernel	
  Es$mator	
  

Where	
  

	
  
•  Weight	
  each	
  training	
  point	
  based	
  on	
  distance	
  to	
  test	
  
point	
  

•  Boxcar	
  kernel	
  yields	
  
	
  	
  	
  	
  	
  local	
  average	
  

36	
  

h	
  



Kernels	
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Choice	
  of	
  kernel	
  bandwidth	
  h	
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Image	
  Source:	
  	
  
Larry’s	
  book	
  –	
  All	
  	
  
of	
  Nonparametric	
  
Sta$s$cs	
  

h=1 h=10 

h=50 h=200 

Choice	
  of	
  kernel	
  is	
  
not	
  that	
  important	
  

Too	
  small	
  

Too	
  large	
  
Just	
  	
  
right	
  

Too	
  small	
  



Kernel	
  Regression	
  as	
  Weighted	
  Least	
  
Squares	
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Weighted Least Squares	
  

Kernel	
  regression	
  corresponds	
  to	
  locally	
  constant	
  es$mator	
  
obtained	
  from	
  (locally)	
  weighted	
  least	
  squares	
  	
  
	
  
i.e.	
  set	
  	
  	
  	
  f(Xi)	
  =	
  β	
  	
  	
  (a	
  constant)	
  



Kernel	
  Regression	
  as	
  Weighted	
  Least	
  
Squares	
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constant 

No$ce	
  that	
  

set	
  	
  	
  f(Xi)	
  =	
  β	
  	
  	
  (a	
  constant)	
  



Local	
  Linear/Polynomial	
  Regression	
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Weighted Least Squares	
  

Local	
  Polynomial	
  regression	
  corresponds	
  to	
  locally	
  
polynomial	
  es$mator	
  obtained	
  from	
  (locally)	
  weighted	
  least	
  
squares	
  	
  
	
  
i.e.	
  set	
  	
  	
  	
  	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (local	
  polynomial	
  of	
  degree	
  p	
  around	
  X)	
  



Summary	
  

•  Instance	
  based/non-­‐parametric	
  approaches	
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Four	
  things	
  make	
  a	
  memory	
  based	
  learner:	
  
1.  A	
  distance	
  metric,	
  dist(x,Xi) 	
   	
   	
  

	
  Euclidean	
  (and	
  many	
  more)	
  	
  	
  
2.  How	
  many	
  nearby	
  neighbors/radius	
  to	
  look	
  at?	
  

	
  k,	
  Δ/h	
  	
  
3.  A	
  weighEng	
  funcEon	
  (opEonal) 	
   	
   	
  

	
  W	
  based	
  on	
  kernel	
  K	
  
4.  How	
  to	
  fit	
  with	
  the	
  local	
  points? 	
   	
   	
  

	
  Average,	
  Majority	
  vote,	
  Weighted	
  average,	
  Poly	
  fit	
  



Summary	
  

•  Parametric	
  vs	
  Nonparametric	
  approaches	
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Ø Nonparametric	
  models	
  place	
  very	
  mild	
  assump$ons	
  on	
  
the	
  data	
  distribu$on	
  and	
  provide	
  good	
  models	
  for	
  
complex	
  data	
  
	
  Parametric	
  models	
  rely	
  on	
  very	
  strong	
  (simplis$c)	
  
distribu$onal	
  assump$ons	
  

 
Ø Nonparametric	
  models	
  (not	
  histograms)	
  requires	
  

storing	
  and	
  compu$ng	
  with	
  the	
  en$re	
  data	
  set.	
  	
  
	
  Parametric	
  models,	
  once	
  fi[ed,	
  are	
  much	
  more	
  efficient	
  
in	
  terms	
  of	
  storage	
  and	
  computa$on.	
  



What	
  you	
  should	
  know…	
  
•  Histograms,	
  Kernel	
  density	
  es$ma$on	
  

–  Effect	
  of	
  bin	
  width/	
  kernel	
  bandwidth	
  
–  Bias-­‐variance	
  tradeoff	
  

•  K-­‐NN	
  classifier	
  
– Nonlinear	
  decision	
  boundaries	
  

•  Kernel	
  (local)	
  regression	
  
–  Interpreta$on	
  as	
  weighted	
  least	
  squares	
  
–  Local	
  constant/linear/polynomial	
  regression	
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Bias-­‐variance	
  tradeoff	
  

•  Simula$ons	
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