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Quick Overview



Hard 1-dimensional Dataset

A If the data setis not linearly separable, then adding new
features (mapping the data to a larger feature space) the
data might become linearly separable

o [ ] o o O
=
Positive p | e

A m general! points in an m-1 dimensional space is always

linearly separable by a hyperspace!
) itis good to map the data to high dimensional spaces

o O L [ ]

Gative fiplanebd

(For example 4 points in 3D)

taken from Andrew W. Moore 5



Hard 1-dimensional Dataset

Make up a new feature!

Sort ofe
é computed from
original feature(s)

Zk:(xk’xlf)

Separable! MAGIC!

Now drop this naugmented

taken from Andrew W. Moore 6



Feature mapping

A m general! points in an m-1 dimensional space is always
linearly separable by a hyperspace!
) Itis good to map the data to high dimensional spaces

A Having m training data, is it always enough to map the
data into a feature space with dimension m-17?

A Nope... We have to think about the test data as well!
Even 1 f we donodot know how man.

AWe might want to map our data to a huge ( 1 ) dimensional
feature space

AOverfitting ? Generalization error?...
We dondt care now. ..



Feature mapping, but how???

Let us have m training objects: &; = [#;1,%;2] €ER?, i=1,...,m

The possible test objects are denoted by # = [#1, Z5] € R?

Let ¢(Z) i@n(@),exp(@ + &), %1, 75 : )

e



Observation




The Perceptron

Algorithm 2 Perceptron learning algorithm (in dual variables).

Require: A feature mapping ¢ : X' — K C £}
Ensure: A linearly separable training sample z = ((x1, y1), ..., (X, Ym))

O{j <— £
end if
end for
until no mistakes have been made within the for loop
return the vector o of expansion coefficients
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SVM

- \/\\/ ‘/L
MaXémlzea - —a a a,a,Q whére_Q, =V, Y, (X, &{7
K =1 2 o112 —
== 7 ~ N~ \
Subjecttothese (¢ actC "k A, Yk :\O

constraints:
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Inner products

So we need the inner product between

N et o . . S Stan(#; 1)
X; = qﬁ(aj‘z) = [S’L?’L(CUT'},Q), eXD($7;,2 _I_ xi,l)a L3,15 337;’2 "

and

’o.

_tan(@; 1)

xj = ¢(&;) = [sin(Z;2), exp(&)2 + £51), %51, %, 5

k(& 35) = (xi,%;) =777

Looks ugly, and needs lots of computation...
Canot we Just say that |

k(Z;, @) = exp(— || — &;||?) 777

There might exist a map ¢(Z) to this function k...

]

’.l

et

]
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Finite example

Given a kernel k£ : X x X — R

and a FINITE set X = {z1,..., 2z} } = construct K and ¢

= G € R"™*", G;; = k(=x;, ;) can be calculated

G is symmetric, PSD = G = UAU?L by SVD.
—uip_

UTU:In’ n:fra,n]g(U)’ U = : ERTXR

uy

/\:diag(kl,...,)\n), M > >...2 A >0
r

A n
I
I n /

Va

r <
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Finite example

Lemma;

Let K = span{¢(x1),...o(xr)}

iqb(a:z) i/\1/2’114; cR" +=1,...,r
leads back to the Gram matrix GG

Proof:
(d(x5), p(2)) e = (AY2u)TAY 24 = ul'Auy = Gy

For general X sets
the necessary and sufficient conditions of £k : X x X — R
to be a kernel are given by the Mercer's theorem.
(See later)
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0.4
1

1.0000
0.8131
0.9254
0.9369
0.9630
0.8987
0.9683

1
-0.8

1
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Gi; = exp(—|z; — z;|2/10) can be calculated.

0.8131
1.0000
0.8745
0.9312
0.9102
0.9837
0.9264

1
-0.4

1
-0.2

0.9254
0.8745
1.0000
0.8806
0.9851
0.9286
0.9440

w1
i

1
0

0.9369
0.9312
0.8806
1.0000
0.9457
0.9714
0.9857

0.4

0.9630
0.9102
0.9851
0.9457
1.0000
0.9653
0.9862

0.8987
0.9837
0.9286
0.9714
0.9653
1.0000
0.9779

Choose 7 2D points

Choose a kernel k

0.9683
0.9264
0.9440
0.9857
0.9862
0.9779
1.0000

Finite example
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[U,D]=svd(G), UDUT=G, UUT=I

U=
-0.3709 0.5499 0.3392 0.6302 0.0992 -0.1844 -0.0633
-0.3670 -0.6596 -0.1679 0.5164 0.1935 0.2972 0.0985
-0.3727 0.3007 -0.6704 -0.2199 0.4635 -0.1529 0.1862
-0.3792 -0.1411 0.5603 -0.47/09 0.4938 0.1029 -0.2148
-0.3851 0.2036 -0.2248 -0.1177 -0.4363 0.5162 -0.5377
-0.3834 -0.3259 -0.0477 -0.0971 -0.3677 -0.7421 -0.2217
-0.3870 0.0673 0.2016 -0.2071 -0.4104 0.1628 0.7531
D =
6.6315 O 0 0 0 0 0
0 0.2331 O 0) 0 0 0)
0 0 0.1272 O 0 0 0
0 0 0 0.0066 O 0 0
0 0 0 0 0.0016 O 0
0 0 0 0 0 0.000 O
0 0 0 0 0 0 0.000
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Mapped points=sqrt(D)*U T
Mapped points =

-0.9551 -0.9451 -0.9597 -0.9765 -0.9917 -0.9872 -0.9966
0.2655 -0.3184 0.1452 -0.0681 0.0983 -0.1573 0.0325
0.1210 -0.0599 -0.2391 0.1998 -0.0802 -0.0170 0.0719
0.0511 0.0419 -0.0178 -0.0382 -0.0095 -0.0079 -0.0168
0.0040 0.0077 0.0185 0.0197 -0.0174 -0.0146 -0.0163
-0.0011 0.0018 -0.0009 0.0006 0.0032 -0.0045 0.0010
-0.0002 0.0004 0.0007 -0.0008 -0.0020 -0.0008 0.0028

o(z1) o(x2) @(z3) ¢(z4) ¢(z5) o(we) &(27)

You can check now that

(d(x1), p(x)) = ¢p(z)Tp(x;) = exp(—|z; — 4|2/10) Vi, j
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Roadmap |

We need feature maps

— O\

Explicit (feature maps) Implicit  (kernel functions)

Qb(f) _ [331’ 331.5132,331 :UQ’ ) /k(fa g) — eXp(_Hf_ ?7”2)

Several algorithms need the inner products of features only!

|

It is much easier to use implicit  feature maps (kernels)

l

Given a function k(Z,7) = —||Z|*2||7]|4% + =

Is it a kernel function???
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Roadmap Il

Given a function k(z, %) = —||x||*2||Z||*% + =

Is it a kernel function???

l

Finite X

SVD,
eigenvectors, eigenvalues

Positive semi def. matrices

Finite dim feature space

/

v

Arbitrary X
We have to think about
the test data as well...

M

Positive semi def. integral operators

Infinite dim feature space (I ,)

rcer 60s

eigenfunctions, eigenvalues

t heor e m,

/

If the kernel is pos. semi def.

feature map construction

19



Mer cer 6s t heo
(k(-,)) € Lo(X X &),

k is symmetric: k(z,z) = k(Z, x)
*
( ) < (T1.f)() = [y k(-,z) f(x)dx operator is pos. semi definit

W, 1 =1,2,... are the eigenfunctions of T}
\with eigenvalues )\

[ (A, \o,...) €1y, X\ >0 Vi

Y; € Loo(X), Vi=1,2,...

k(x,T)

]

2 variables

1 vari 20



Mer cer o0s t heo

We like the Mercer’'s theorem becuase of the expansion:
oo
k(z,z) = > Npi(2);(Z) Yz,
i=1
It shows the existence of the feature map ¢ : X — K Cl»

= (¢(x), (Z))1,
= (VA1y1(x), Vi (), .. )T (VA1Y1(2), vVAaa(x), .. .)

v(x) = (Y1(x),v>(x),...) is known as Mercer map

21



Roadmap Il

We want to know which functions are kernels
A How to make new kernels from old kernels?
A The polynomial kernel: k(u, v) = ({u,v) v )

For a given kernel k(-,-) we already know how to define feature
space K, and ¢ : X — K feature map (Mercer map):

K =15, and ¢(z) = (VA1v1(z), vigpa(x),.. )t

We will show another way using RKHS:
K=ZF, and ¢(z) = k(z,-) € F
Inner product=22??

22




Ready for the details?
)



Hard 1-dimensional Dataset

What would SVMs do with this data?

Not a big surprise

[ ) [ ) o o () O O o 0 ([ )
X:O/rg gw
Posi tive p | BQative Aplaneod
Doesnoét | ook | 1 ke sl ack wvar

taken from Andrew W. Moore 24



Hard 1-dimensional Dataset

Make up a new feature!

Sort ofe
é computed from
original feature(s)

Zk:(xk’xlf)

Separable! MAGIC!

New features are sometimes called bas/s functions.
Now drop this naugmented

taken from Andrew W. Moore 25



Hard 2-dimensional Dataset

Let us map this point to the 3 @ dimension...

26



Kernels and Linear Classifiers

Let & = [#1,%>] € R? be a vectorial represenation
of object r € X

Let ¢ : X — K C R3 feature map be given by
O(T) = [#1, 75, T182]’ € K C R3

Def. Feature space: K
We will use linear classifiers in this feature space.

In the original space R?2 for a given w € R3 the decision surface is:

Xo(w) = {Z € R? | w1¥1 + woi3 + waF17> = 0}

e This is nonlinear in £ € R2

e This is linear in the feature space ¢(&) € K ¢ R3
27



0.0

1.0

¢(T) = [T1, 73, T175]1 € K C R3 feature map

Picture is taken from R. Herbrich 28



~1.0 05 0.0 05 1.0
X1

The Xo(W) = {Z € R2 | wid1 + ’LUQZE% + waZ1do = 0O}
decision surface for different fixed w vectors.

Picture is taken from R. Herbrich 2°



Kernels and Linear Classifiers

() = [¢p1(F), $2(T), ¢3(2)] = [7F1, T35, T172]T

\/

Feature functions

e We seek for a small set of basis vectors {¢;}
which allows perfect discrimination between
the classes in X (Feature selection)

e If we have too many features = overfitting can happen.

30



Back to the Perceptron Example

File Edit View Insert Tools Window Help

Random

Close

31



The Perceptron

A The primal algorithm in the feature space

D ={(x;,y;),i=1,...,m} training data set.

x; = ¢(x;) € K C R™ feature map.

1., w=0¢eR"
2.,V (x;,y;), 1 =1,...,m, evaluate sign(y;{x;, w))

3., If x; is misclassified (sign(y;(x;,w)) < 0)
then w ;= w + y,;x;

4., If no mistakes occur = STOP

32



The primal algorithm in the feature space

Algorithm 1 Perceptron learning algorithm (in primal variables).

Require: A feature mapping ¢ : X' — K C £}

Ensure: A linearly separable training sample z = ((x1, ¥1), ..., (Xm, Yi))
wo=0;r=0
repeat If z; is misclassified

for j =1,...,mdo /
if y; (¢ (x;),w) <0 then
Wil =W+ ¢ (x))
[ <—1t+1
end if
end for
until no mistakes have been made within the for loop
return the final weight vector w;

Picture is taken from R. Herbrich 33



The Perceptron

We start at wg =0 L CR"

m=— num of training examples,
n = dim(IC),

t= num of mistakes so far

m m
= wr = > o;¢(x;) = > a;x; € R™ at time step ¢

Thus instead of tuning n variables
w = (w1,...,wn) (Primal variables)
in the large n-dimensional feautre space K, it is
enough to learn o« = (a1, ..., o) values (Dual variables).

34




The Perceptron
The Dual Algorithm in the feature space

D = {(xz;,y;),1=1,...,m} training data set.
x; = ¢(x;) € K C R™ feaure map, :=1,...,m

t= num %f mistakes somfar
= wr = > a;p(x;) = > ayx; € R at time step ¢

1=1 =1

We update a4 € R™ whenever a mistake occurs

1., ag=0€ R™
2., Vs =1,...,m evaluate
m m
Yj (X5, wy) = y;{(x;, _Zl QX)) = Yj _Zl (X, X;)
1= 7=
3., If z; is misclassified (y;(x;,w¢) < 0) then update a; € K

4., If no mistakes occur = STOP 35



The Dual Algorithm in the feature space

Algorithm 2 Perceptron learning algorithm (in dual variables).

Require: A feature mapping ¢ : X' — K C £}
Ensure: A linearly separable training sample z = ((x1, y1), ..., (X, Ym))
o =0
repeat
for j=1,....,mdo —
if y; > o (@ (xi), ¢ (x;)) <0 then
Aj <o)+ Y
end if
end for
until no mistakes have been made within the for loop
return the vector o of expansion coefficients

If T IS misclassified

Picture is taken from R. Herbrich 3°



The Dual Algorithm In the feature space

For the classification of a new object (x,vy)

we have to evaluate
i)

y Y ai(X,x;)

1=1

We don't have to know the actual values of x = ¢(x)!

It is enough to know the inner products
(x,x%;) Vi=1,...,m

between the object and the training points

37



Kernels

Definition : (kernel)

We are given ¢ : X — K C [5 feautre mapping.

The kernel k£ : X x X — R is the corresponding
inner product function:

k(zi, zj) = ((zi), ¢($g)> = (X4, X)) K

Xz Xj




Kernels

Definition : (Gram matrix, kernel matrix)

Gram matrix G € R™*™ of kernel k at {x1,...,xm}:

Given a kernel £ A XA —- R

and a training set {z1,...,zm} } = Gij = k(zg, 25) = (X, %;)

Definition : (Feature space, kernel space)

IC = span{p(x) | x € X} C R"”

39



Kernel technique

Definition:

Matrix G € R™*™ is positive semidefinite (PSD)
& G is symmetric, and 0 < 81'GB v3 € Rmx™

Given a kernel £ A XX — R

and a training set {z1,...,2m} } = Gij = k(x5 x5) = (X4, X5) K

Lemma:

The Gram matrix is symmetric, PSD matrix.

Proof:
X = [x1,...,Xm] € RPM = G = XITX € R™*™

0 <(XB,XB)c =BG .



Kernel technigue

We already know that several algorithms
use the kernel values only
(...and NOT the feature values)!

Key idea:

41



Kernel technigue

We have seen so far how to build a kernel k(-,-)
from a given feature map ¢ : X —- R"

Now we want to do the opposite:

A function k(-,-) is kernel & there exists a feature space K and
feature map ¢ : X — K, such that k(x1,22) = (¢(x1), d(x2))x

42



Finite example

Given a kernel k£ : X x X — R

and a FINITE set X = {z1,..., 2z} } = construct K and ¢

= G € R"™*", G;; = k(=x;, ;) can be calculated

G is symmetric, PSD = G = UAU?L by SVD.
—uip_

UTU:In’ n:fra,n]g(U)’ U = : ERTXR

uy

/\:diag(kl,...,)\n), M > >...2 A >0
r

A n
I
I n /

Va

r <

\ 43



Finite example

Lemma;

Let K = span{¢(x1),...o(xr)}

iqb(a:z) i/\1/2’114; cR" +=1,...,r
leads back to the Gram matrix GG

Proof:
(d(x5), p(2)) e = (AY2u)TAY 24 = ul'Auy = Gy

For general X sets
the necessary and sufficient conditions of £k : X x X — R
to be a kernel are given by the Mercer's theorem.
(See later)

44



Kernel technique, Finite example

We have seen:

If X ={x1,...,z+} and
Gram matrix G is a symmetric, PSD matrix

= we can construct feature space K,
and feature map ¢ : X — K, compatible with GG

Lemma:

These conditions are necessary

45



Kernel technique, Finite example

Proof : ... wrong I n the Her|
If d\, < 0 = dv € R" eigenvector s.t. Gv = \pv

= v Gv = v \pv = M||v]|2 < O

G is a Gram matrix = J¢ . X — K, s.t. G;; = (¢(x;), ¢(z5))k

Consider the w = [¢(z1),...d(x)]v € K vector.

= [lwllg = (w,w)k

= ([¢(21), . .- o(ar)]v, [d(21), - .. p(ar)]v) = v Gu < (jé

46



Kernel technigue, Finite example

Summary:

Given a function k£ : X x X — R,
and a FINITE set X = {z1,...,z¢}

k(-,-) is kernel & G = {k(z;,x;)};; 9ram matrix is
symmetric, PSD.

a7



Integral operators, eigenfunctions

Instead of studying the Gv = \v G € R™*" problem,
we examine its generalization:

num of objects r is countably infinite or continuum,
and X = {xz|x € X'} is arbitrary.

Definition : Integral operator with kernel k(.,.)

(TN = [ k(@) (@)da
X

Remark:
(Tv)(i) = (Gov)(i) i=1,...,r is a special case of this,
when the integral is replaced by a finite sum.

48



From Vector domain to Functions

AObserve that each vector v = (v[1], v[2], ..., V[n])
IS a mapping from the integers {1,2,..., n}to <

AWNe can generalize this easily to INFINITE domain
w = (w[1], w[2], ..., w[n], ...)
where w is mapping from {1,2,..}to <

1 2 1

0

(T)(D) = (@)D = Y. Gy v
=Lk 1)
Jx

49



From Vector domain to Functions
From integers we can further extend to

A < or

A <m

A Strings

A Graphs

A Sets

A Whatever
Aé

50



L, and |, spaces

Definition A.33 (Normed space) Suppose X is a vector space. A normed space X
is defined by the tuple (X, ||-||) where ||-|| : X — R is called a norm, i.e., for all
X,y € X and c € R,

IX|| > Oand ||xX]| =0 x=0,
lex|l = el - lIx]l .
Ix+yl =< [xI+ Iyl - (A.18)
This clearly induces a metric p on X by p (X,y) = ||Xx — y||. Note that equation

(A.18) is known as the triangle inequality.

Definition A.34 (E}_’) and L) Given asubset X C X', the space L, (X) is the space
of all functions f : X — R such that
flf(x)l”dx«::oo if p< o0,
X
sup | f (x)| < o0 if p=00.

xeX Picture is taken from R. Herbrich



L, and |, spaces

Picture is taken from R. Herbrich °2



