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Ralf Herbrich: Learning Kernel Classifiers 
 Chapter 2 



Quick Overview  
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Hard 1-dimensional Dataset 

x=0  

Positive ñplaneò Negative ñplaneò 

x=0  

ÅIf the data set is not  linearly separable, then adding new 
features (mapping the data to a larger feature space) the 
data might become linearly separable 

Åm general! points in an m -1 dimensional space is always 
linearly separable by a hyperspace! 
)  it is good to map the data to high dimensional spaces 

 (For example 4 points in 3D) 

taken from Andrew W. Moore 
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Hard 1-dimensional Dataset 
Make up a new feature!  

Sort ofé  
é computed from 
original feature(s)  

x=0  

),( 2

kkk xx=z

Separable! MAGIC! 

Now drop this ñaugmentedò data into our linear SVM. 

taken from Andrew W. Moore 
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Feature mapping 

Åm general! points in an m-1 dimensional space is always 
linearly separable by a hyperspace! 
)  it is good to map the data to high dimensional spaces 

 

ÅHaving m training data, is it always enough to map the 
data into a feature space with dimension m-1? 

Å Nope... We have to think about the test data as well!  
Even if we donôt know how many test data we have... 

ÅWe might want to map our data to a huge ( 1 ) dimensional 
feature space 

ÅOverfitting? Generalization error?...  
We donôt care now... 
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Feature mapping, but how??? 

1  
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Observation 

 Several algorithms use the inner products only, 
but not the feature values!!!  

E.g. Perceptron, SVM, Gaussian Processes... 



10 

The Perceptron 
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Maximize 
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Inner products 

So we need the inner product between 

and 

Looks ugly, and needs lots of computation...  

Canôt we just say that let 
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Finite example 
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Finite example 

Lemma:  

Proof:  



15 

Finite example 

Choose 7 2D points 

Choose a kernel k 

1 

2 3 

4 

5 
6 

7 

G =     

1.0000    0.8131    0.9254    0.9369    0.9630    0.8987    0.9683    
0.8131    1.0000    0.8745    0.9312    0.9102    0.9837    0.9264    
0.9254    0.8745    1.0000    0.8806    0.9851    0.9286    0.9440    
0.9369    0.9312    0.8806    1.0000    0.9457    0.9714    0.9857    
0.9630    0.9102    0.9851    0.9457    1.0000    0.9653    0.9862    
0.8987    0.9837    0.9286    0.9714    0.9653    1.0000    0.9779    
0.9683    0.9264    0.9440    0.9857    0.9862    0.9779    1.0000  
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[U,D]=svd(G), UDUT=G, UUT=I  

U =   

    -0.3709    0.5499    0.3392    0.6302    0.0992   -0.1844   -0.0633    
-0.3670   -0.6596   -0.1679    0.5164    0.1935    0.2972    0.0985   
-0.3727    0.3007   -0.6704   -0.2199    0.4635   -0.1529    0.1862   
-0.3792   -0.1411    0.5603   -0.4709    0.4938    0.1029   -0.2148   
-0.3851    0.2036   -0.2248   -0.1177   -0.4363    0.5162   -0.5377   
-0.3834   -0.3259   -0.0477   -0.0971   -0.3677   -0.7421   -0.2217   
-0.3870    0.0673    0.2016   -0.2071   -0.4104    0.1628    0.7531  

D =   

    6.6315    0             0            0            0          0           0    
0       0.2331     0            0            0           0           0    
0            0            0.1272    0            0           0           0    
0            0            0            0.0066    0           0           0    
0            0            0            0            0.0016   0           0    
0            0            0            0            0           0.000     0    
0            0            0            0            0           0           0.000  
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Mapped points=sqrt(D)*U T 

Mapped points = 

    -0.9551   -0.9451   -0.9597   -0.9765   -0.9917   -0.9872   -0.9966          
0.2655    -0.3184    0.1452   -0.0681    0.0983   -0.1573    0.0325    
0.1210    -0.0599   -0.2391    0.1998   -0.0802   -0.0170    0.0719    
0.0511     0.0419   -0.0178   -0.0382   -0.0095   -0.0079   -0.0168                
0.0040     0.0077    0.0185    0.0197   -0.0174   -0.0146   -0.0163 
-0.0011    0.0018   -0.0009    0.0006    0.0032   -0.0045    0.0010  
-0.0002    0.0004    0.0007   -0.0008   -0.0020   -0.0008    0.0028 
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Roadmap I 

We need feature maps  

Implicit  (kernel functions)  Explicit  (feature maps) 

Several algorithms need the inner products  of features only!  

It is much easier to use implicit  feature maps (kernels) 

Is it a kernel function???  Is it a kernel function???  
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Mercerôs theorem,  

eigenfunctions, eigenvalues 

Positive semi def. integral operators 

Infinite dim feature space (l 2) 

Roadmap II 

Is it a kernel function???  SVD,  

eigenvectors, eigenvalues 

Positive semi def. matrices 

Finite dim feature space 

We have to think about  
the test data as well...  

If the kernel is pos. semi def. ,  feature map construction  
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Mercerôs theorem 

(*)  

2 variables 1 variable 
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Mercerôs theorem 

...J 
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Roadmap III  

We want to know which functions are kernels  

ÅHow to make new kernels from old kernels? 

ÅThe polynomial kernel:  

We will show another way using RKHS:  

Inner product=??? 



Ready for the details? 
;)  
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Hard 1-dimensional Dataset 

What would SVMs do with this data? 

Not a big surprise 

x=0  

Positive ñplaneò Negative ñplaneò 

x=0  

Doesnôt look like slack variables will save us this timeé 

taken from Andrew W. Moore 
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Hard 1-dimensional Dataset 
Make up a new feature!  

Sort ofé  
é computed from 
original feature(s)  

x=0  

),( 2

kkk xx=z

New features are sometimes called basis functions. 

Separable! MAGIC! 

Now drop this ñaugmentedò data into our linear SVM. 
taken from Andrew W. Moore 
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Hard 2-dimensional Dataset 
 

 
O 

O 
X 

X 

Let us map this point to the 3 rd dimension... 
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Kernels and Linear Classifiers 

We will use linear classifiers in this feature space.  



28 Picture is taken from R. Herbrich 



29 Picture is taken from R. Herbrich 
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Kernels and Linear Classifiers 

Feature functions 
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Back to the Perceptron Example 
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The Perceptron 

ÅThe primal algorithm in the feature space  
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The primal algorithm in the feature space  

Picture is taken from R. Herbrich 
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The Perceptron 
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The Perceptron 
The Dual Algorithm in the feature space  
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The Dual Algorithm in the feature space  

Picture is taken from R. Herbrich 
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The Dual Algorithm in the feature space  
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Kernels 

Definition : (kernel)  
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Kernels 

Definition : (Gram matrix, kernel matrix)  

Definition : (Feature space, kernel space)  
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Kernel technique 

Lemma:  
  

The Gram matrix is symmetric, PSD matrix. 

Proof:  

Definition:  
 



41 

Kernel technique 

Key idea:  



42 

Kernel technique 
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Finite example 
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Finite example 

Lemma:  

Proof:  
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Kernel technique, Finite example 

We have seen:  

Lemma:  
 

  These conditions are necessary  
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Kernel technique, Finite example 

Proof : ... wrong in the Herbrichôs book... 



47 

Kernel technique, Finite example 

Summary:  

How to generalize this to general sets???  
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Integral operators, eigenfunctions  

Definition : Integral operator with kernel k(.,.)  

Remark:  
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From Vector domain to Functions 

Å Observe that each vector v = (v[1], v[2], ..., v[n])  
 is a mapping from the integers {1,2,..., n} to <   

  
ÅWe can generalize this easily to INFINITE  domain  
 w = (w[1], w[2], ..., w[n], ...)  
 where w is mapping from {1,2,...} to <  

1 
2 

1 2 1  

1  

G v i 

j 
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From Vector domain to Functions 

From integers we can further extend to  

 
Å <  or  

Å < m 

ÅStrings 

ÅGraphs 

ÅSets 

ÅWhatever 

Åé 
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Lp and lp spaces 

. 

Picture is taken from R. Herbrich 
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Lp and lp spaces 

Picture is taken from R. Herbrich 


