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Linear classifiers 

which line is better?

4Which decision boundary is better? 



Pick the one with the largest margin!

Class 1
Class 2

Margin

Data:

w · x + b < 0

w · x + b > 0
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Scaling

Classify as.. +1 if w · x + b ≥ 1

–1 if w · x + b ≤ –1

Universe 
explodes

if -1 < w · x + b < 1

Plus-Plane

Minus-Plane

Classifier Boundary

Classification rule:

Goal: Find the maximum margin classifier

How large is the margin of this classifier?
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w · x + b ≤ –1

w · x + b ≥ 1



Computing the margin width

Let x+ and x
- be such that

� w · x+ + b = +1 

� w · x- + b = -1 

� x
+ = x- + λ w

� |x+ – x
-| = M 

M = Margin Width

x-

x+
ww ⋅

=
2
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Maximize  M ≡ minimize  w·w !



Observations
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We can assume b=0

Classify as.. +1 if w · x + b ≥ 1

–1 if w · x + b ≤ –1

Universe 
explodes

if -1 < w · x + b < 1

This is the same as



The Primal Hard SVM

This is a QP problem (m-dimensional)  
(Quadratic cost function, linear constraints)
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Quadratic Programming

Find

and to

Subject to
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Efficient Algorithms exist for QP. 

They often solve the dual problem instead of the primal.



Constrained Optimization
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Lagrange Multiplier 

Moving the constraint to objective function
Lagrangian:

Solve:

Constraint is active when αααα > 0
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Lagrange Multiplier – Dual 

Variables
Solving:

When αααα > 0, constraint is tight 13



From Primal to Dual

Lagrange function:
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Primal problem:



Proof cont.

The Lagrange problem:

The Lagrange Problem
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Proof cont.
The Dual Problem
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The Dual Hard SVM

Quadratic Programming (n-dimensional)

Lemma
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The Problem with Hard SVM

It assumes samples are linearly separable...
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What can we do if data is 
not linearly separable???



Hard 1-dimensional Dataset

If the data set is not linearly separable, then adding new 
features (mapping the data to a larger feature space) the 

data might become linearly separable
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Hard 1-dimensional Dataset
Make up a new feature!

Sort of… 
… computed from 
original feature(s)

x=0

),(
2

kkk
xx=z

Separable! MAGIC!

Now drop this “augmented” data into our linear SVM.
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Feature mapping

� n general! points in an n-1 dimensional space is always 
linearly separable by a hyperspace!
⇒ it is good to map the data to high dimensional spaces

� Having n training data, is it always good enough to map 
the data into a feature space with dimension n-1?

• Nope... We have to think about the test data as well!
Even if we don’t know how many test data we have and 
what they are...

� We might want to map our data to a huge (∞) dimensional 
feature space

� Overfitting? Generalization error?... 
We don’t care now...
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∞

How to do feature mapping?

Use features of features of features of features….
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The Problem with Hard SVM

Solutions:

1. Use feature transformation to a larger space

⇒ each training samples are linearly separable in 

the feature space 

⇒ Hard SVM can be applied ☺

⇒ overfitting... �

It assumes samples are linearly separable...
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2. Soft margin SVM instead of Hard SVM

• We will discuss this now



Hard SVM

The Hard SVM problem can be rewritten:

where

Misclassification

Correct classification
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From Hard to Soft constraints

We can try to solve the soft version of it:

Your loss is only 1 instead of ∞ if you misclassify an instance

Instead of using hard constraints (points are linearly separable)

where
Misclassification

Correct classification
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Problems with l0-1 loss

It is not convex in yf(x) ⇒ It is not convex in w, either...

... and we like only convex functions...

Let us approximate it with convex functions!
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Approximation of the Heaviside step 

function

Picture is taken from R. Herbrich 27



Approximations of l0-1 loss

• Piecewise linear approximations (hinge loss, llin)

• Quadratic approximation (lquad)
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The hinge loss approximation of l0-1

Where,
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The hinge loss upper bounds the 0-1 loss 



Geometric interpretation: 

Slack Variables
M =

2

w⋅ w

ξ7

ξ 1

ξ2
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The Primal Soft SVM problem
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Equivalently,

where



The Primal Soft SVM problem

We can use this form, too.:
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Equivalently,

What is the dual form of primal soft SVM?



The Dual Soft SVM (using hinge loss)

where
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The Dual Soft SVM (using hinge loss)
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The Dual Soft SVM (using hinge loss)
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SVM classification in the dual space

Solve the dual problem
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Why is it called 

Support Vector Machine?

KKT conditions



Why is it called 

Support Vector Machine?
w····x + b > 0 w····x + b < 0

γ γ

Hard SVM:

Linear hyperplane defined 

by “support vectors”

Moving other points a little 

doesn’t effect the decision 

boundary 

only need to store the 

support vectors to predict 

labels of new points
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Support vectors in Soft SVM



Support vectors in Soft SVM

� Margin support vectors

� Nonmargin support vectors



Dual SVM Interpretation: 

Sparsity

Only few αjs can be 

non-zero : where 

constraint is tight

(<w,xj>+ b)yj = 1

ααααj > 0

ααααj > 0

ααααj > 0

ααααj = 0

ααααj = 0

ααααj = 0
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What about multiple classes?
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One against all
Learn 3 classifiers 

separately: 
Class k vs. rest

(wk, bk)k=1,2,3

y = arg max wk·x + bk

k

But wks may not be 

based on the same 

scale.
Note: (aw)····x + (ab) is 

also a solution
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Learn 1 classifier: Multi-class SVM

Simultaneously learn 3 sets of weights.
Constraints:

y = arg maxk w(k)· x + b(k)

Margin - gap between 

correct class and nearest 

other class
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Learn 1 classifier: Multi-class SVM

Simultaneously learn 3 sets of weights

y = arg maxk w(k)· x + b(k)

Joint optimization: wks 

have the same scale.
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What you need to know

• Maximizing margin

• Derivation of SVM formulation

• Slack variables and hinge loss

• Relationship between SVMs and logistic regression

• 0/1 loss

• Hinge loss

• Log loss

• Tackling multiple class

• One against All

• Multiclass SVMs
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SVM vs. Logistic Regression

SVM : Hinge loss:

0-1 loss

0-1 1

Logistic Regression : Log loss ( log conditional likelihood)

Hinge lossLog loss
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SVM for Regression
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SVM classification in the dual space
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“Without b”

“With b”



So why solve the dual SVM?

• There are some quadratic programming 

algorithms that can solve the dual faster than 

the primal, specially in high dimensions m>>n

• But, more importantly, the “kernel trick”!!!
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What if data is not linearly 

separable?

Use features of features 
of features of features….

Φ(x) = (x1
3, x2

3, x3
3, x1

2x2x3, ….,)
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For example polynomials



Dot Product of Polynomials

d=1

d=2
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Dot Product of Polynomials
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Higher Order Polynomials

m – input features d – degree of polynomial

grows fast: d = 6, m = 100, about 1.6 billion terms
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Feature space becomes really large very quickly!



Dual formulation only depends 

on dot-products, not on w!

Φ(x) – High-dimensional feature space, but never need it explicitly as 
long as we can compute the dot product fast using some Kernel K

55



Finally: The Kernel Trick!

• Never represent features explicitly

– Compute dot products in closed form

• Constant-time high-dimensional dot-
products for many classes of features
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• Polynomials of degree d

• Polynomials of degree up to d

• Gaussian/Radial kernels (polynomials of all orders –

recall series expansion)

• Sigmoid

Common Kernels
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Which functions can be used as kernels???

…and why are they called kernels???



Overfitting

• Huge feature space with kernels, what about 

overfitting???

• Maximizing margin leads to sparse set of 

support vectors 

• Some interesting theory says that SVMs 

search for simple hypothesis with large margin

• Often robust to overfitting
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What about classification time?

• For a new input x, if we need to represent Φ(x), we are in 

trouble!

• Recall classifier: sign(w····Φ(x)+b)

• Using kernels we are cool!
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Kernels in Logistic Regression

• Define weights in terms of features:

• Derive simple gradient descent rule on αi
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A few results 
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Steve Gunn’s svm toolbox

Results, Iris 2vs13, Linear kernel
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Results, Iris 1vs23, 2nd order kernel
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2nd order decision boundary:

(parabola, hyperbola, ellipse)



Results, Iris 1vs23, 2nd order kernel
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Results, Iris 1vs23, 13th order kernel
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Results, Iris 1vs23, RBF kernel

66



Results, Iris 1vs23, RBF kernel
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Results, Chessboard, Poly kernel
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Chessboard dataset



Results, Chessboard, Poly kernel
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Results, Chessboard, Poly kernel
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Results, Chessboard, Poly kernel
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Results, Chessboard, poly kernel
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Results, Chessboard, RBF kernel
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