Introduction to Machine Learning CMU-10701

Support Vector Machines

Barnabás Póczos & Aarti Singh

2014 Spring

http://barnabas-cmu-10701.appspot.com/

Introduction to Machine Learning (10-701), Spring, 2014

Hi there!

Let me send your Invitation Code to your Andrew email address. Then please Register with this code.

Invitation code :	
Nick name :	
Andrew id :	
First name :	
Last name :	
Email :	
Register	Get invitation code

Log out

Introduction to Machine Learning (10-701), Spring, 2014

Welcome test1! Login successful!

Nick name: test1

Andrew Id: bapoczos_v3

First name: test1

Last name: test1

Email: peergrading.test1@gmail.com

Pick the one with the largest margin!

How large is the margin of this classifier? Goal: Find the maximum margin classifier

Computing the margin width

Maximize $M \equiv minimize \mathbf{w} \cdot \mathbf{w}$!

Observations

We can assume b=0

Classify as.. +1 -1 if $w \cdot x + b \ge 1$ -1 if $w \cdot x + b \le -1$ Universe if $-1 < w \cdot x + b < 1$ explodes

This is the same as $y_i \langle \mathbf{x}_i, \mathbf{w} \rangle \geq 1$, $\forall i = 1, \ldots, n$

The Primal Hard SVM

- Given $D = \{(\mathbf{x}_i, y_i), i = 1, ..., n\}$ training data set.
- Assume that *D* is **linearly separable**.

$$\widehat{\mathbf{w}} = rg\min_{\mathbf{w}\in\mathbb{R}^m}rac{1}{2}\|\mathbf{w}\|^2$$

subject to $y_i \langle \mathbf{x}_i, \mathbf{w} \rangle \geq 1$, $\forall i = 1, \dots, n$

Prediction: $f_{\widehat{\mathbf{w}}}(\mathbf{x}) = \operatorname{sign}(\langle \widehat{\mathbf{w}}, \mathbf{x} \rangle)$

This is a QP problem (m-dimensional) (Quadratic cost function, linear constraints)

Quadratic Programming

Subject to

Efficient Algorithms exist for QP. They often solve the dual problem instead of the primal.

Constrained Optimization

 $\begin{array}{ll} \min_x \ x^2 \\ \text{s.t.} \ x \ge b \end{array}$

Lagrange Multiplier

Solve:

 $[\min_{x} \max_{\alpha} L(x, \alpha)]$ s.t. $\alpha \ge 0$ x

Constraint is active when $\dot{\alpha} > 0$

Lagrange Multiplier – Dual Variables

From Primal to Dual

Primal problem:

$$\widehat{\mathbf{w}} = \arg\min_{\mathbf{w}\in\mathbb{R}^m} \frac{1}{2} \|\mathbf{w}\|^2$$

subject to $y_i \langle \mathbf{x}_i, \mathbf{w} \rangle \ge 1$, $\forall i = 1, \dots, n$

Lagrange function:

$$\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_n)^T \ge 0$$
 Lagrange multipliers
 $L(\mathbf{w}, \boldsymbol{\alpha}) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i (y_i \langle \mathbf{x}_i, \mathbf{w} \rangle - 1)$

The Lagrange Problem

$$L(\mathbf{w}, \boldsymbol{\alpha}) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i (y_i \langle \mathbf{x}_i, \mathbf{w} \rangle - 1)$$

The Lagrange problem:

$$(\hat{\mathbf{w}}, \hat{\boldsymbol{lpha}}) = \arg\min_{\mathbf{w} \in \mathbb{R}^m} \max_{\mathbf{0} \leq \boldsymbol{lpha} \in \mathbb{R}^n} L(\mathbf{w}, \boldsymbol{lpha})$$

$$0 = \frac{\partial L(\mathbf{w}, \alpha)}{\partial \mathbf{w}} \Big|_{\mathbf{w} = \widehat{\mathbf{w}}} = \widehat{\mathbf{w}} - \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$$

$$\Rightarrow \widehat{\mathbf{w}} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$$

The Dual Problem

$$L(\mathbf{w}, \alpha) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i \left(y_i \langle \mathbf{x}_i, \mathbf{w} \rangle - 1 \right)$$

$$\Rightarrow \hat{\mathbf{w}} = \sum_{i=1}^n \alpha_i y_i \mathbf{x}_i$$

$$\Rightarrow \underline{L}(\hat{\mathbf{w}}, \alpha) = \frac{1}{2} \|\hat{\mathbf{w}}\|^2 - \sum_{i=1}^n \alpha_i \left(y_i \langle \mathbf{x}_i, \hat{\mathbf{w}} \rangle - 1 \right)$$

$$= \frac{1}{2} \|\sum_{i=1}^n \alpha_i y_i \mathbf{x}_i\|^2 + \alpha^T \mathbf{1}_n - \sum_{i=1}^n \alpha_i y_i \langle \mathbf{x}_i, \sum_{j=1}^n \alpha_j y_j \mathbf{x}_j \rangle$$

$$= \alpha^T \mathbf{1}_n - \frac{1}{2} \alpha^T Y G Y \alpha$$

$$Y \doteq diag(y_1, \dots, y_n), y_i \in \{-1, 1\}^n$$

 $G \in \mathbb{R}^{n \times n} \doteq \{G_{ij}\}_{i,j}^{n,n}$, where $G_{ij} \doteq \langle \mathbf{x}_i, \mathbf{x}_j \rangle$ Gram matrix.

The Dual Hard SVM

$$\boldsymbol{Y} \doteq diag(y_1, \ldots, y_n), \ y_i \in \{-1, 1\}^n$$

 $G \in \mathbb{R}^{n \times n} \doteq \{G_{ij}\}_{i,j}^{n,n}$, where $G_{ij} \doteq \langle \mathbf{x}_i, \mathbf{x}_j \rangle$ Gram matrix.

$$\hat{\boldsymbol{\alpha}} = \arg \max_{\boldsymbol{\alpha} \in \mathbb{R}^n} \boldsymbol{\alpha}^T \mathbf{1}_n - \frac{1}{2} \boldsymbol{\alpha}^T \boldsymbol{Y} \boldsymbol{G} \boldsymbol{Y} \boldsymbol{\alpha}$$

subject to $\alpha_i \geq 0$, $\forall i = 1, \dots, n$

Quadratic Programming (n-dimensional)

Lemma
$$\widehat{\mathbf{w}} = \sum_{i=1}^{n} \widehat{\alpha}_i y_i \mathbf{x}_i$$

Prediction: $f_{\widehat{\mathbf{w}}}(x) = \operatorname{sign}(\langle \widehat{\mathbf{w}}, \mathbf{x} \rangle) = \operatorname{sign}(\sum_{i=1}^{n} \widehat{\alpha}_{i} y_{i} \underbrace{\langle \mathbf{x}_{i}, \mathbf{x} \rangle}_{k(\mathbf{x}_{i}, \mathbf{x})})$

The Problem with Hard SVM

It assumes samples are linearly separable...

What can we do if data is not linearly separable???

Hard 1-dimensional Dataset

If the data set is **not** linearly separable, then adding new features (mapping the data to a larger feature space) the data might become linearly separable

Hard 1-dimensional Dataset

Now drop this "augmented" data into our linear SVM.

Feature mapping

- *n* general! points in an *n-1* dimensional space is always linearly separable by a hyperspace!
 it is good to map the data to high dimensional spaces
- □ Having *n* training data, is it always good enough to map the data into a feature space with dimension *n*-1?
 - Nope... We have to think about the test data as well! Even if we don't know how many test data we have and what they are...
- □ We might want to map our data to a huge (∞) dimensional feature space
- Overfitting? Generalization error?...
 We don't care now...

How to do feature mapping?

Let us have n training objects: $\vec{x}_i = [\vec{x}_{i,1}, \vec{x}_{i,2}] \in \mathbb{R}^2$, $i = 1, \ldots, n$

The possible test objects are denoted by $\vec{x} = [\vec{x}_1, \vec{x}_2] \in \mathbb{R}^2$

Use features of features of features of features....

The Problem with Hard SVM

It assumes samples are linearly separable... Solutions:

- 1. Use feature transformation to a larger space
 - \Rightarrow each training samples are linearly separable in the feature space
 - \Rightarrow Hard SVM can be applied \bigcirc
 - \Rightarrow overfitting... \otimes
- 2. Soft margin SVM instead of Hard SVM
 - We will discuss this now

Hard SVM

The Hard SVM problem can be rewritten:

$$\hat{\mathbf{w}}_{hard} = \arg\min_{\mathbf{w}\in\mathbb{R}^m} \frac{1}{2} \|\mathbf{w}\|^2$$

subject to $y_i \langle \mathbf{x}_i, \mathbf{w} \rangle > 0, \forall i = 1, ..., n$
$$\bigcup$$
$$\hat{\mathbf{w}}_{hard} = \arg\min_{\mathbf{w}\in\mathbb{R}^m} \sum_{i=1}^n l_{0-\infty} (\langle \mathbf{x}_i, \mathbf{w} \rangle, y_i) + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

where

$$l_{0-\infty}(a,b) \doteq \begin{cases} \infty : ab < 0 & \text{Misclassification} \\ 0 : ab > 0 & \text{Correct classification} \end{cases}$$

From Hard to Soft constraints

Instead of using hard constraints (points are linearly separable)

$$\hat{\mathbf{w}}_{hard} = \arg\min_{\mathbf{w}\in\mathbb{R}^m}\sum_{i=1}^n l_{0-\infty}(\langle \mathbf{x}_i, \mathbf{w} \rangle, y_i) + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

We can try to solve the soft version of it:

Your loss is only 1 instead of ∞ if you misclassify an instance

$$\hat{\mathbf{w}}_{soft} = \arg\min_{\mathbf{w}\in\mathbb{R}^{m}}\sum_{i=1}^{n}l_{0-1}(\langle \mathbf{x}_{i},\mathbf{w}\rangle,y_{i}) + \frac{\lambda}{2}\|\mathbf{w}\|^{2}$$
where
$$\sum_{l_{0-1}(y,f(\mathbf{x}))} = \begin{cases} 1:yf(\mathbf{x}) < 0 & \text{Misclassification} \\ 0:yf(\mathbf{x}) > 0 & \text{Correct classification} \end{cases}$$

Problems with I₀₋₁ loss

$$\widehat{\mathbf{w}}_{soft} = \arg\min_{\mathbf{w}\in\mathbb{R}^m} \sum_{i=1}^n l_{0-1}(\langle \mathbf{x}_i, \mathbf{w} \rangle, y_i) + \frac{\lambda}{2} \|\mathbf{w}\|^2$$
$$l_{0-1}(y, f(\mathbf{x})) = \begin{cases} 1 : yf(\mathbf{x}) < 0\\ 0 : yf(\mathbf{x}) > 0 \end{cases}$$

It is not convex in $yf(\mathbf{x}) \Rightarrow$ It is not convex in \mathbf{w} , either... ... and we like only convex functions...

Let us approximate it with convex functions!

Approximation of the Heaviside step function

Approximations of I₀₋₁ loss

• Piecewise linear approximations (hinge loss, I_{lin})

$$l_{lin}(f(\mathbf{x}), y) = \max\{1 - yf(\mathbf{x}), 0)\}$$

[We want $yf(\mathbf{x}) > 1$]

• Quadratic approximation (I_{quad})

$$l_{quad}(f(\mathbf{x}), y) = \max\{1 - yf(\mathbf{x}), 0)\}^2$$

The hinge loss approximation of I₀₋₁

$$\widehat{\mathbf{w}} = \arg\min_{\mathbf{w}\in\mathbb{R}^m}\sum_{i=1}^n \underbrace{l_{lin}(\langle \mathbf{x}_i, \mathbf{w} \rangle, y_i)}_{\xi_i \ge 0} + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

Where,

$$\xi_i \doteq l_{lin}(f(\mathbf{x}_i), y_i) = \max\{1 - y_i f(\mathbf{x}_i), 0)\}$$

$$\geq 1 - y_i \underbrace{\langle \mathbf{w}, \mathbf{x}_i \rangle}_{f(\mathbf{x}_i)} \geq l_{0-1}(y_i, f(\mathbf{x}_i))$$

The hinge loss upper bounds the 0-1 loss

Geometric interpretation: Slack Variables

The Primal Soft SVM problem

$$\widehat{\mathbf{w}}_{soft} = \arg\min_{\mathbf{w}\in\mathbb{R}^m} \sum_{i=1}^n \underbrace{l_{lin}(\langle \mathbf{x}_i, \mathbf{w} \rangle, y_i)}_{\xi_i \ge 0} + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

where

$$\xi_i \doteq l_{lin}(f(\mathbf{x}_i), y_i) = \max\{1 - y_i(\mathbf{w}^T \mathbf{x}_i), 0\}$$

Equivalently,

$$\begin{split} \widehat{\mathbf{w}}_{soft} &= \arg \min_{\mathbf{w} \in \mathbb{R}^{m}, \boldsymbol{\xi} \in \mathbb{R}^{n}} \sum_{i=1}^{n} \xi_{i} + \frac{\lambda}{2} \|\mathbf{w}\|^{2} \\ \text{subject to } y_{i} \langle \mathbf{x}_{i}, \mathbf{w} \rangle \geq 1 - \xi_{i}, \ \forall i = 1, \dots, n \\ \xi_{i} \geq 0, \ \forall i = 1, \dots, n \\ \xi_{i} \colon \text{Slack variables} \end{split}$$

The Primal Soft SVM problem

$$\widehat{\mathbf{w}}_{soft} = \arg \min_{\mathbf{w} \in \mathbb{R}^m, \boldsymbol{\xi} \in \mathbb{R}^n} \sum_{i=1}^n \xi_i + \frac{\lambda}{2} \|\mathbf{w}\|^2$$
subject to $y_i \langle \mathbf{x}_i, \mathbf{w} \rangle \ge 1 - \xi_i, \ \forall i = 1, \dots, n$

$$\xi_i \ge 0, \ \forall i = 1, \dots, n$$

Equivalently,

We can use this form, too.:

$$\begin{split} \hat{\mathbf{w}}_{soft} &= \arg\min_{\mathbf{w}\in\mathbb{R}^m, \boldsymbol{\xi}\in\mathbb{R}^n} C\sum_{\substack{i=1\\\boldsymbol{\xi}^T\mathbf{1}_n}}^n \xi_i + \frac{1}{2}\|\mathbf{w}\|^2 \\ \end{split}$$
where $C &= \frac{1}{\lambda}$

What is the dual form of primal soft SVM?

The Dual Soft SVM (using hinge loss)

• $\alpha = (\alpha_1, \dots, \alpha_n)^T \ge 0$ Largrange multipliers • $\beta = (\beta_1, \dots, \beta_n)^T \ge 0$ Largrange multipliers

$$(\widehat{\mathbf{w}}, \widehat{\boldsymbol{\xi}}, \widehat{\boldsymbol{\alpha}}, \widehat{\boldsymbol{\beta}}) = \arg \min \max_{\mathbf{w} \in \mathbb{R}^m} \max_{\substack{\mathbf{w} \in \mathbb{R}^m \\ \boldsymbol{\xi} \in \mathbb{R}^n}} \max_{\substack{\mathbf{w} \in \boldsymbol{\beta}}} L(\mathbf{w}, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta})$$

where

$$L(\mathbf{w},\boldsymbol{\xi},\boldsymbol{\alpha},\boldsymbol{\beta}) = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i - \sum_{i=1}^n \alpha_i \left(y_i \langle \mathbf{x}_i, \mathbf{w} \rangle - 1 + \xi_i \right) - \sum_{i=1}^n \beta_i \xi_i$$

The Dual Soft SVM (using hinge loss)

$$L(\mathbf{w}, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \frac{1}{2} \|\mathbf{w}\|^2 + C\boldsymbol{\xi}^T \mathbf{1}_n - \sum_{i=1}^n \alpha_i y_i \langle \mathbf{x}_i, \mathbf{w} \rangle + \boldsymbol{\alpha}^T \mathbf{1}_n - \boldsymbol{\xi}^T (\boldsymbol{\alpha} + \boldsymbol{\beta})$$

$$\underbrace{\mathsf{NIN} \; \mathsf{MAX}}_{\mathbf{W}, \mathbf{\xi}, \mathbf{\alpha}, \mathbf{\beta}}_{\partial \mathbf{W}} \Big|_{\mathbf{w} = \hat{\mathbf{w}}} = \hat{\mathbf{w}} - \sum_{i=1}^n \alpha_i y_i \mathbf{x}_i \Rightarrow \quad \hat{\mathbf{w}} = \sum_{i=1}^n \alpha_i y_i \mathbf{x}_i$$

$$0 = \frac{\partial L(\mathbf{w}, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta})}{\partial \boldsymbol{\xi}} \Big|_{\boldsymbol{\xi} = \hat{\boldsymbol{\xi}}} = C\mathbf{1}_n - \boldsymbol{\alpha} - \boldsymbol{\beta} \Rightarrow \boldsymbol{\beta} = C\mathbf{1}_n - \boldsymbol{\alpha} \ge 0$$

$$\Rightarrow (\hat{\boldsymbol{\alpha}}, \hat{\boldsymbol{\beta}}) = \arg \max L(\hat{\mathbf{w}}, \hat{\boldsymbol{\xi}}, \boldsymbol{\alpha}, \boldsymbol{\beta})$$

$$0 \le \boldsymbol{\alpha} \le C$$

$$0 \le \boldsymbol{\beta}$$

$$\forall \boldsymbol{\xi} \begin{pmatrix} \mathbf{Y}_1 & \mathbf{0} \\ \mathbf{0} \le \boldsymbol{\beta} \end{pmatrix}$$

$$\Rightarrow \hat{\boldsymbol{\alpha}} = \arg \max_{0 \le \boldsymbol{\alpha} \le C} \boldsymbol{\alpha}^T \mathbf{1}_m - \frac{1}{2} \boldsymbol{\alpha}^T \mathbf{Y} \mathbf{G} \mathbf{Y} \boldsymbol{\alpha}$$

34

The Dual Soft SVM (using hinge loss)

$$\begin{split} \mathbf{Y} &\doteq diag(y_1, \dots, y_n) \in \{-1, 1\}^n \quad \underbrace{\mathbf{X}_i \Rightarrow \phi(\mathbf{X}_i)}_{k(\mathbf{x}_i, \mathbf{x}_j)} \quad (\mathbf{a}, \mathbf{c}) = \mathbf{a}^\mathsf{T} \mathbf{c} \\ \mathbf{G} &\in \mathbb{R}^{n \times n} \doteq \{G_{ij}\}_{i,j}^{n,n}, \text{ where } G_{ij} \doteq \overleftarrow{\langle \mathbf{x}_i, \mathbf{x}_j \rangle}, \text{ Gram matrix.} \\ \mathbf{a} &= \left\{ \underbrace{\mathbf{C}_{ij}}_{i,j} \right\}_{i,j}^{n,n} \quad (- \mathbb{I} \underbrace{\mathbf{X}_i - \mathbf{X}_j}_{i,j}) \quad (\mathbf{a}, \mathbf{c}) = \underbrace{\mathbf{a}_i(\mathbf{X}_i, \mathbf{X}_j)}_{k(\mathbf{x}_i, \mathbf{x}_j)} \quad (\mathbf{a}, \mathbf{a}) = \underbrace{\mathbf{a}_i(\mathbf{x}_i, \mathbf{x}_j)}_{k(\mathbf{x}_i, \mathbf{x}_j)} \quad (\mathbf{a}, \mathbf{a}) = \underbrace{\mathbf{a}_i(\mathbf{x}_i, \mathbf{x}_j)}_{k(\mathbf{x}_i, \mathbf{x}_j)}_{k(\mathbf{x}_i, \mathbf{x}_j)} \quad (\mathbf{a}, \mathbf{a}) = \underbrace{\mathbf{a}_i(\mathbf{x}_i, \mathbf{x}_j)}_{k(\mathbf{x}_i, \mathbf$$

This is the same as the dual hard-SVM problem, but now we have the additional $0 \le \alpha_i \le C$ constraints.

SVM classification in the dual space

Solve the dual problem

$$\hat{\alpha} = \arg \max_{\alpha \in \mathbb{R}^n} \underline{\alpha^T \mathbf{1}_n - \frac{1}{2} \alpha^T Y G Y \alpha}$$

subject to $0 \le \alpha_i \le C \quad \forall i$

where
$$C = \frac{1}{\lambda}$$
. Let $\widehat{\mathbf{w}} = \sum_{i=1}^{n} \widehat{\alpha}_{i} y_{i} \mathbf{x}_{i}$.
On test data \mathbf{x} : $f_{\widehat{\mathbf{w}}}(\mathbf{x}) = \langle \widehat{\mathbf{w}}, \mathbf{x} \rangle = \sum_{i=1}^{n} \widehat{\alpha}_{i} y_{i} \langle \underline{\mathbf{x}}_{i}, \mathbf{x} \rangle = \sum_{k(\mathbf{x}_{i}, \mathbf{x})}^{n} \widehat{\alpha}_{i} y_{i} \langle \underline{\mathbf{x}}_{i}, \mathbf{x} \rangle$

Why is it called Support Vector Machine?

 $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_n)^T \geq 0$ Lagrange multipliers

$$L(\mathbf{w}, \alpha) = \frac{1}{2} \|\mathbf{w}\|^{2} - \sum_{i=1}^{n} \alpha_{i} (y_{i}(\mathbf{x}_{i}, \mathbf{w}) - 1)$$

KKT conditions

$$COMPLEMENTARY \quad SLACKNESS \quad CONDITION$$

$$d_{i} > 0 = M_{i}(X_{i}, \mathbf{w}) = 1$$

$$(X_{i}, \mathbf{w}) = -1$$

Why is it called Support Vector Machine?

Linear hyperplane defined by "<u>support vectors</u>"

Hard SVM:

Moving other points a little doesn't effect the decision boundary

only need to store the support vectors to predict labels of new points

Support vectors in Soft SVM

Support vectors in Soft SVM

Dual SVM Interpretation: Sparsity

$$\mathbf{w} = \sum_{j} \alpha_{j} y_{j} \mathbf{x}_{j}$$

Only few α_j s can be non-zero : where constraint is tight

 $(< w, x_j > + b)y_j = 1$

What about multiple classes?

One against all

Learn 1 classifier: Multi-class SVM

Simultaneously learn 3 sets of weights. Constraints:

0

0

0

÷

0

0

0

0

$$\mathbf{w}^{(y_j)} \cdot \mathbf{x}_j + b^{(y_j)} \ge \mathbf{w}^{(y')} \cdot \mathbf{x}_j + b^{(y')} + 1, \ \forall y' \neq y_j, \ \forall j$$

Margin - gap between correct class and nearest other class

- $y = arg max_k w^{(k)} \cdot x + b^{(k)}$

Learn 1 classifier: Multi-class SVM

Simultaneously learn 3 sets of weights minimize_{w,b} $\sum_{y} \mathbf{w}^{(y)} \cdot \mathbf{w}^{(y)} + C \sum_{j} \sum_{y \neq y_{j}} \xi_{j}^{(y)}$ $\mathbf{w}^{(y_{j})} \cdot \mathbf{x}_{j} + b^{(y_{j})} \ge \mathbf{w}^{(y)} \cdot \mathbf{x}_{j} + b^{(y)} + 1 - \xi_{j}^{(y)}, \ \forall y \neq y_{j}, \ \forall j$ $\xi_{j}^{(y)} \ge 0$, $\forall y \neq y_{j}, \ \forall j$

y = arg max_k $\mathbf{w}^{(k)} \cdot \mathbf{x} + \mathbf{b}^{(k)}$ Joint optimization: \mathbf{w}_k s have the same scale.

What you need to know

- Maximizing margin
- Derivation of SVM formulation
- Slack variables and hinge loss
- Relationship between SVMs and logistic regression
 - 0/1 loss
 - Hinge loss
 - Log loss
- Tackling multiple class
 - One against All
 - Multiclass SVMs

SVM vs. Logistic Regression

SVM: Hinge loss:
$$\log(f(\mathbf{x}_j), y_j) = (1 - (\mathbf{w} \cdot \mathbf{x}_j + b)y_j))_+$$

 $\widehat{\mathbf{w}} = \arg\min_{\mathbf{w}\in\mathbb{R}^m} \sum_{i=1}^n \underbrace{\log(\mathbf{x}_i \cdot \mathbf{w} + b, y_i)}_{\xi_i \ge 0} + \frac{\lambda}{2} \|\mathbf{w}\|^2$

Logistic Regression : Log loss (log conditional likelihood)

$$loss(f(x_j), y_j) = -\log P(y_j \mid x_j, \mathbf{w}, b) = \log(1 + e^{-(\mathbf{w} \cdot x_j + b)y_j})$$

$$\widehat{\mathbf{w}} = \arg \min_{\mathbf{w} \in \mathbb{R}^m} \sum_{i=1}^n loss(\mathbf{x}_i \cdot \mathbf{w} + b, y_i)$$

Log loss Hinge loss
0-1 loss
-1 0 1 ($\mathbf{w} \cdot x_j + b$) y_j

47

SVM for Regression

$$LOSS(M, WTX) = (M-WTX)^{2}$$

$$O IF [M-WTX] \leq E$$

$$IM-WTXI \quad OTHERWISE$$

$$IM-WTXI \quad OTHERWISE$$

$$-E \circ E$$

SVM classification in the dual space

"Without b"

$$\widehat{\alpha} = \arg \max_{\pmb{lpha} \in \mathbb{R}^m} \pmb{lpha}^T \pmb{1}_m - \frac{1}{2} \pmb{lpha}^T \pmb{Y} \pmb{G} \pmb{Y} \pmb{lpha}$$

subject to $0 \le \alpha_i \le C$

"With b"
$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i (y_i(\mathbf{x}_i \cdot \mathbf{w} + b) - 1)$$

$$\hat{\alpha} = \arg \max_{\alpha \in \mathbb{R}^n} \alpha^T \mathbf{1}_n - \frac{1}{2} \alpha^T Y G Y \alpha$$

subject to $0 \le \alpha_i \le C$
$$\sum_i \alpha_i y_i = 0$$

So why solve the dual SVM?

- There are some quadratic programming algorithms that can solve the dual faster than the primal, specially in high dimensions m>>n
- But, more importantly, the "kernel trick"!!!

What if data is not linearly separable?

Use features of features of features of features....

For example polynomials

$$\Phi(\mathbf{x}) = (x_1^3, x_2^3, x_3^3, x_1^2 x_2 x_3, \ldots,)$$

Dot Product of Polynomials

 $\Phi(\mathbf{x}) =$ polynomials of degree exactly d

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad \mathbf{z} = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}$$
$$d=1 \quad \Phi(\mathbf{x}) \cdot \Phi(\mathbf{z}) = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = x_1 z_1 + x_2 z_2 = \mathbf{x} \cdot \mathbf{z}$$
$$d=2$$
$$\Phi(\mathbf{x}) \cdot \Phi(\mathbf{z}) = \begin{bmatrix} x_1^2 \\ \sqrt{2}x_1 x_2 \\ x_2^2 \end{bmatrix} \cdot \begin{bmatrix} x_1^2 \\ \sqrt{2}z_1 z_2 \\ z_2^2 \end{bmatrix} = x_1^2 z_1^2 + x_2^2 z_2^2 + 2x_1 x_2 z_1 z_2$$
$$= (x_1 z_1 + x_2 z_2)^2$$
$$= (\mathbf{x} \cdot \mathbf{z})^2$$

Dot Product of Polynomials

 $\begin{array}{c} x_{1}^{3}z_{1}^{3} + 3x_{1}^{2}x_{2}z_{1}^{2}z_{2} + 3x_{1}z_{1} + 3x_{2}^{2}z_{2}^{2}z_{1} + 3x_{1}z_{1} + 3x_{2}^{2}z_{2}^{2}z_{2} + x_{2}^{3}z_{2$ $\Phi(\mathbf{x}) \cdot \Phi(\mathbf{z}) = K(\mathbf{x}, \mathbf{z}) = (\mathbf{x} \cdot \mathbf{z})^d$ d

Higher Order Polynomials

Feature space becomes really large very quickly!

m – input features d – degree of polynomial

num. terms
$$= \begin{pmatrix} d+m-1\\ d \end{pmatrix} = \frac{(d+m-1)!}{d!(m-1)!} \sim m^d$$

grows fast: d = 6, m = 100, about 1.6 billion terms

$$a e c a + b + c = d$$

$$x_1 x_2 x_3 a + b + c + m - i = 0 + m - i$$

$$a + b + c + m - i = 0 + m - i$$

$$a + b + c + m - i = 0 + m - i$$

$$a + b + c + m - i = 0 + m - i$$

$$a + b + c + m - i = 0 + m - i$$

$$a + b + c + m - i = 0 + m - i$$

$$a + b + c + m - i = 0 + m - i$$

$$a + b + c + m - i = 0 + m - i$$

$$a + b + c + m - i = 0 + m - i$$

$$a + b + c + m - i = 0 + m - i$$

$$a + b + c + m - i = 0 + m - i$$

Dual formulation only depends on dot-products, not on w!

maximize_{$$\alpha$$} $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \cdot \mathbf{x}_{j}$
 $C \ge \alpha_{i} \ge 0$

maximize_{$$\alpha$$} $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} K(\mathbf{x}_{i}, \mathbf{x}_{j})$
 $K(\mathbf{x}_{i}, \mathbf{x}_{j}) = \Phi(\mathbf{x}_{i}) \cdot \Phi(\mathbf{x}_{j})$
 $C \ge \alpha_{i} \ge 0$

 $\Phi(\mathbf{x})$ – High-dimensional feature space, but never need it explicitly as long as we can compute the dot product fast using some Kernel K

Finally: The Kernel Trick!

maximize_{$$\alpha$$} $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} K(\mathbf{x}_{i}, \mathbf{x}_{j})$
 $K(\mathbf{x}_{i}, \mathbf{x}_{j}) = \Phi(\mathbf{x}_{i}) \cdot \Phi(\mathbf{x}_{j})$
 $\sum_{i} \alpha_{i} y_{i} = 0$
 $C \ge \alpha_{i} \ge 0$

- Never represent features explicitly

 Compute dot products in closed form
- Constant-time high-dimensional dotproducts for many classes of features

$$\mathbf{w} = \sum_{i} \alpha_{i} y_{i} \Phi(\mathbf{x}_{i})$$
$$b = y_{k} - \mathbf{w} \cdot \Phi(\mathbf{x}_{k})$$
for any k where $C > \alpha_{k} > 0$

Common Kernels

- Polynomials of degree d $K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v})^d$
- Polynomials of degree up to d $K(\mathbf{u},\mathbf{v}) = (\mathbf{u} \cdot \mathbf{v} + 1)^d$
- Gaussian/Radial kernels (polynomials of all orders recall series expansion) $(111 v)^{2}$

$$K(\mathbf{u}, \mathbf{v}) = \exp\left(-\frac{||\mathbf{u} - \mathbf{v}||^2}{2\sigma^2}\right)$$

Sigmoid

$$K(\mathbf{u},\mathbf{v}) = tanh(\eta \mathbf{u} \cdot \mathbf{v} + \nu)$$

Which functions can be used as kernels??? ...and why are they called kernels???

Overfitting

- Huge feature space with kernels, what about overfitting???
 - Maximizing margin leads to sparse set of support vectors
 - Some interesting theory says that SVMs search for simple hypothesis with large margin
 - Often robust to overfitting

What about classification time?

$$\mathbf{w} = \sum_{i} \alpha_{i} y_{i} \Phi(\mathbf{x}_{i})$$
$$b = y_{k} - \mathbf{w} \cdot \Phi(\mathbf{x}_{k})$$
for any k where $C > \alpha_{k} > 0$

- For a new input x, if we need to represent Φ(x), we are in trouble!
- Recall classifier: sign($\mathbf{w} \cdot \Phi(\mathbf{x}) + b$)
- Using kernels we are cool!

$$K(\mathbf{u},\mathbf{v}) = \Phi(\mathbf{u}) \cdot \Phi(\mathbf{v})$$

Kernels in Logistic Regression

$$P(Y = 1 | \mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{-(\mathbf{w} \cdot \Phi(\mathbf{x}) + b)}}$$

• Define weights in terms of features:

$$\mathbf{w} = \sum_{i} \alpha_{i} \Phi(\mathbf{x}_{i})$$

$$P(Y = 1 | \mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{-(\sum_{i} \alpha_{i} \Phi(\mathbf{x}_{i}) \cdot \Phi(\mathbf{x}) + b)}}$$

$$= \frac{1}{1 + e^{-(\sum_{i} \alpha_{i} K(\mathbf{x}, \mathbf{x}_{i}) + b)}}$$

- Derive simple gradient descent rule on α_i

A few results

Steve Gunn's svm toolbox Results, Iris 2vs13, Linear kernel

No. of Support Vectors: 2 (1.7%)

Results, Iris 1vs23, 2nd order kernel

No. of Support Vectors: 12 (10.0%)

No. of Support Vectors: 30 (25.0%)

Results, Iris 1vs23, 13th order kernel

No. of Support Vectors: 12 (10.0%)

No. of Support Vectors: 41 (34.2%)

No. of Support Vectors: 55 (45.8%)

Chessboard dataset

No. of Support Vectors: 263 (87.7%)

No. of Support Vectors: 183 (61.0%)

No. of Support Vectors: 164 (54.7%)

No. of Support Vectors: 147 (49.0%)

No. of Support Vectors: 102 (34.0%)

Results, Chessboard, RBF kernel

No. of Support Vectors: 174 (58.0%)