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Administration

» Piazza: ... Please use it!

= Blackboard is ready

= Self assessment gquestions?
= Slides are online

= HW guestions next week

= [Feedback is important!

= Recitation: This Wednesday at 6pm (prob theory)



Independence

Independent random variables:
P(X,Y) = P(X)P(Y)

P(X|Y) = P(X)

Y and X don’t contain information about each other.
Observing Y doesn’t help predicting X.



Dependent / Independent

Independent X,Y Dependent X,Y



Conditionally Independent

Conditionally independent:
P(X,Y|Z) = P(X|Z)P(Y|Z)
Knowing Z makes X and Y independent

Examples:

Dependent: show size and reading skills
Conditionally independent: show size and reading skills given age



Our first machine learning problem:

Parameter estimation:
MLE, MAP




MLE for Bernoulli distribution

P(Heads) = 6, P(Talls) = 1-6

The estimated probabillity is: 3/5 “Frequency of heads”

MLE: Choose 6 that maximizes the probability of observed data



Maximum Likelihood

Estimation

MLE: Choose 0 that maximizes the probability of observed data

Ovirp = argm@ax P(D|0)
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How good Is this estimator?

Pr(|0, — 6] > &) <68, n =777



Rolling a Dice,
Estimation of parameters 6,,0,,...,0;




Rolling a Dice

Calculating the Empirical Average
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Rolling a Dice,

Calculating the Empirical Average
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How fast do they converge to the true mean?
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Hoeffding's inequality (1963)
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It only contains the range of the variables,
but not the variances.



“Convergence rate” for LLN

from Hoeffding

From Hoeffding: Let 2 =1yn (b — a;)?
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