

Introduction to Machine Learning

CMU-10701

2. MLE, MAP

What happened last time?

Barnabás Póczos & Aarti Singh

2014 Spring

Administration

- Piazza: ... Please use it!
- Blackboard is ready
- Self assessment questions?
- Slides are online
- HW questions next week
- Feedback is important!
- Recitation: This Wednesday at 6pm (prob theory)

Independence

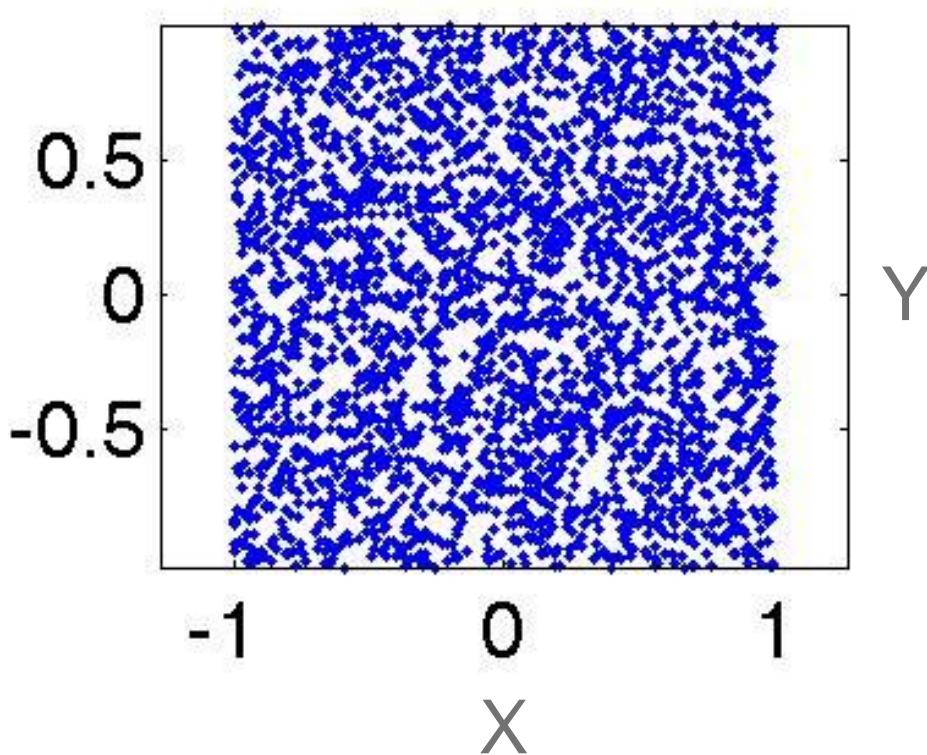
Independent random variables:

$$P(X, Y) = P(X)P(Y)$$

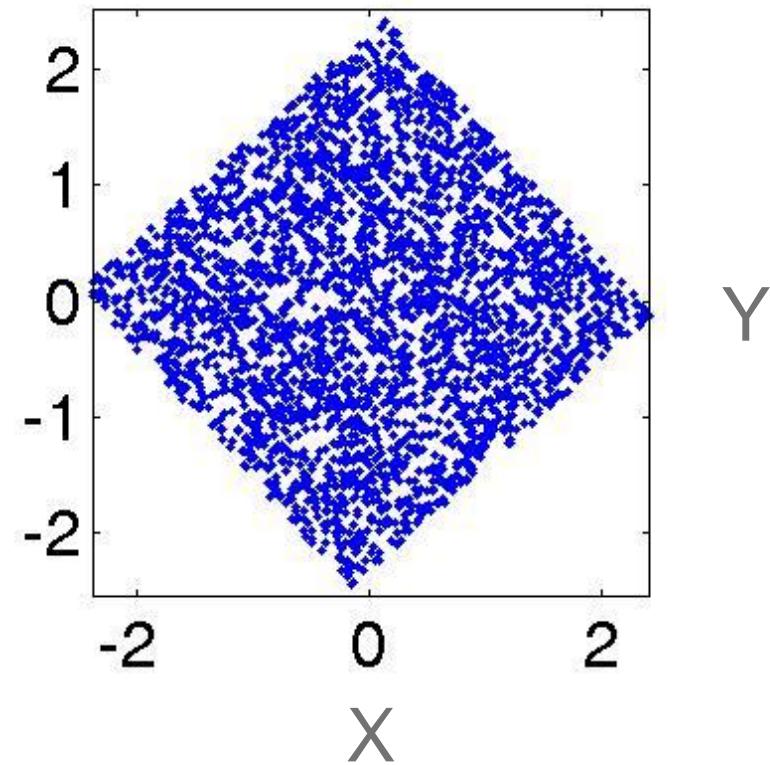
$$P(X|Y) = P(X)$$

Y and X don't contain information about each other.
Observing Y doesn't help predicting X.

Dependent / Independent



Independent X,Y



Dependent X,Y

Conditionally Independent

Conditionally independent:

$$P(X, Y|Z) = P(X|Z)P(Y|Z)$$

Knowing Z makes X and Y independent

Examples:

Dependent: show size and reading skills

Conditionally independent: show size and reading skills given age

Our first machine learning problem:

Parameter estimation:
MLE, MAP

MLE for Bernoulli distribution

Data, $D =$

$$D = \{X_i\}_{i=1}^n, \quad X_i \in \{\text{H, T}\}$$

$$P(\text{Heads}) = \theta, \quad P(\text{Tails}) = 1-\theta$$

The estimated probability is: **3/5** “Frequency of heads”

MLE: Choose θ that maximizes the probability of observed data

Maximum Likelihood Estimation

MLE: Choose θ that maximizes the probability of observed data

$$\begin{aligned}\hat{\theta}_{MLE} &= \arg \max_{\theta} P(D \mid \theta) \\ &= \arg \max_{\theta} \prod_{i=1}^n P(X_i \mid \theta) \quad \text{Independent draws} \\ &= \arg \max_{\theta} \prod_{i:X_i=H} \theta \prod_{i:X_i=T} (1 - \theta) \quad \text{Identically distributed} \\ &= \arg \max_{\theta} \underbrace{\theta^{\alpha_H} (1 - \theta)^{\alpha_T}}_{J(\theta)}\end{aligned}$$

$$\hat{\theta}_{MLE} = \frac{\alpha_H}{\alpha_H + \alpha_T}$$

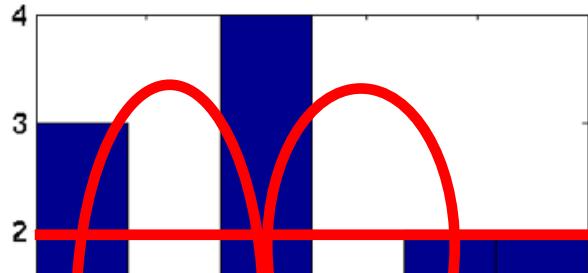
How good is this estimator?

I want to know the coin parameter $\theta \in [0,1]$ within $\varepsilon = 0.1$ error, with probability at least $1-\delta = 0.95$.
How many flips do I need?

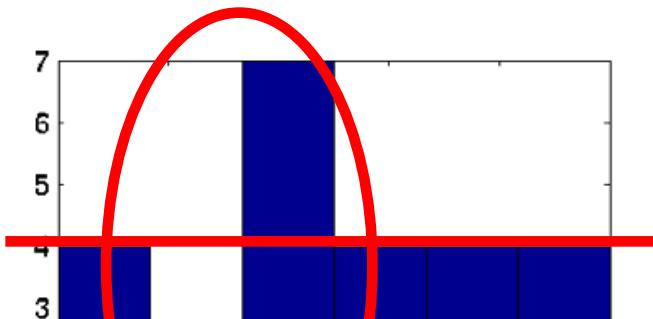
$$\hat{\theta}_{MLE} = \frac{\alpha_H}{\alpha_H + \alpha_T} \quad \Pr(|\hat{\theta}_n - \theta| > \varepsilon) \leq \delta, \quad n = ???$$

Rolling a Dice, Estimation of parameters $\theta_1, \theta_2, \dots, \theta_6$

12

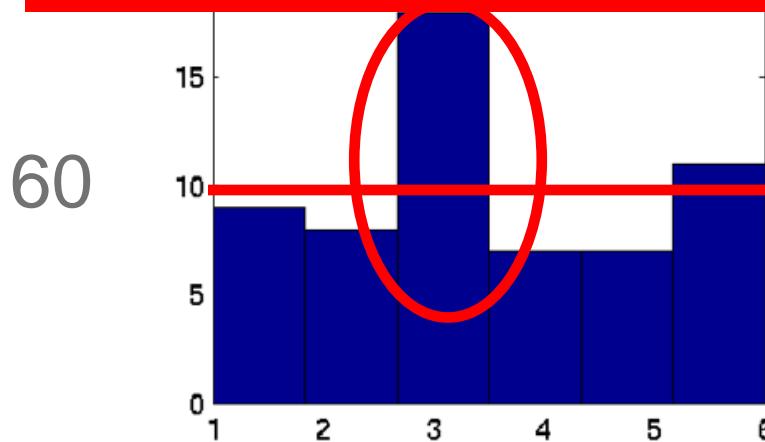


24

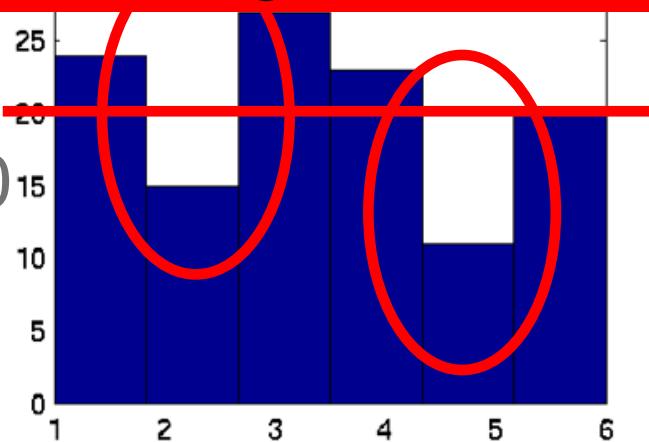


Does the MLE estimation (relative frequencies)
converge to the right value?

How fast does it converge?

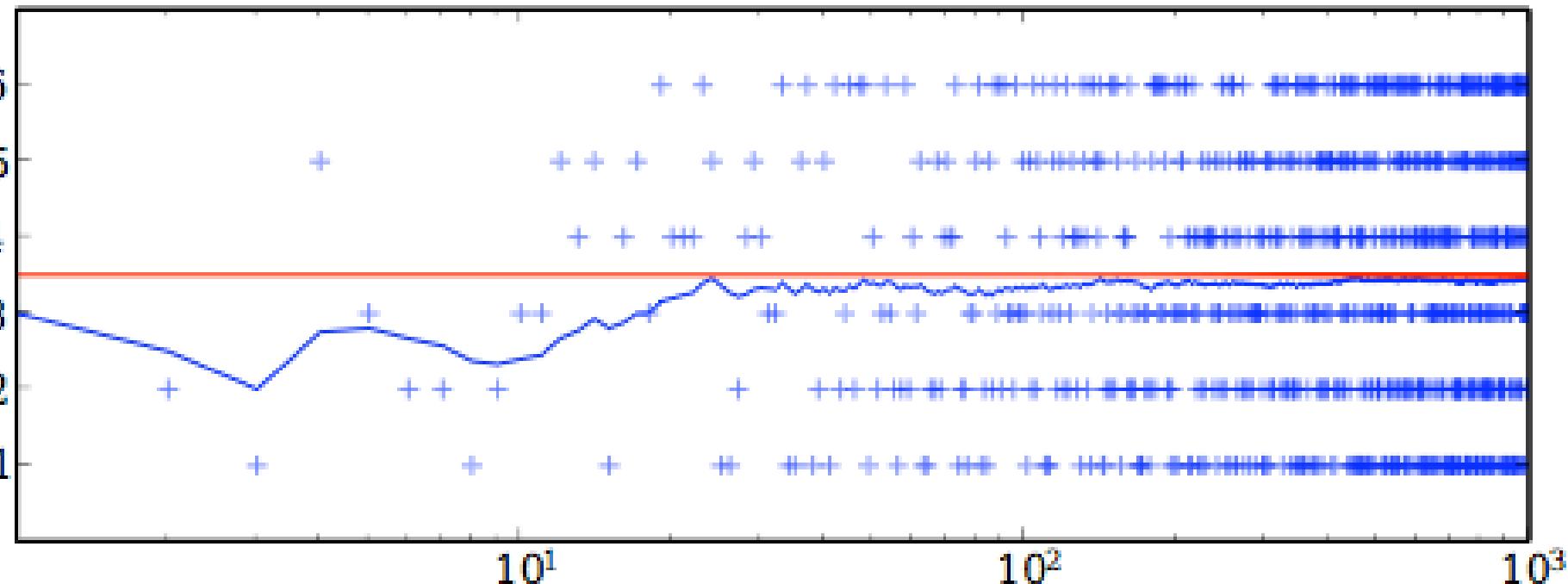


120



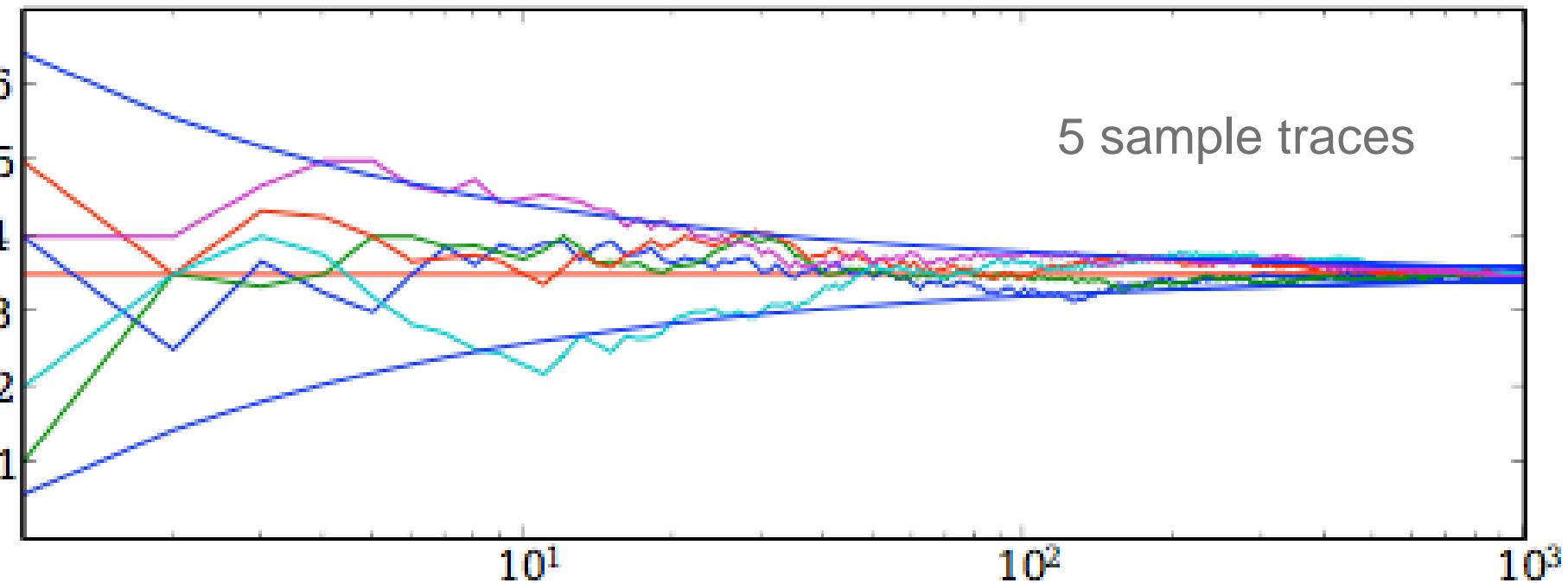
Rolling a Dice

Calculating the Empirical Average



Does the empirical average converge to the true mean?
How fast does it converge?

Rolling a Dice, Calculating the Empirical Average



How fast do they converge to the true mean?

$$\theta \pm \sqrt{Var(X)/n}$$

Hoeffding's inequality (1963)

$$\left. \begin{array}{l} X_1, \dots, X_n \text{ independent} \\ X_i \in [a_i, b_i] \\ \varepsilon > 0 \end{array} \right\} \Rightarrow$$

$$\Rightarrow \mathbb{P}\left(\left|\frac{1}{n} \sum_{i=1}^n (X_i - \mathbb{E}X_i)\right| > \varepsilon\right) \leq 2 \exp\left(\frac{-2n\varepsilon^2}{\frac{1}{n} \sum_{i=1}^n (b_i - a_i)^2}\right)$$

It only contains the range of the variables,
but not the variances.

“Convergence rate” for LLN from Hoeffding

From Hoeffding: Let $c^2 = \frac{1}{n} \sum_{i=1}^n (b_i - a_i)^2$

$$\Rightarrow \Pr(|\hat{\theta}_n - \theta| > \varepsilon) \leq 2 \exp\left(\frac{-2n\varepsilon^2}{c^2}\right)$$

$$\delta = 2 \exp\left(\frac{-2n\varepsilon^2}{c^2}\right)$$

$$\log \frac{\delta}{2} = \frac{-2n\varepsilon^2}{c^2}$$

$$\frac{c^2}{2n} \log \frac{2}{\delta} = \varepsilon^2$$

$$\varepsilon = c \sqrt{\frac{\log 2 - \log \delta}{2n}}$$

$\Rightarrow |\hat{\theta}_n - \theta| < \varepsilon = c \sqrt{\frac{1}{2n} \log \frac{2}{\delta}}$ with prob. at least $(1 - \delta)$

Convergence rate

Introduction to Machine Learning

CMU-10701

Stochastic Convergence and Tail Bounds

Barnabás Póczos

MACHINE LEARNING DEPARTMENT

