Learning Theory II

Aarti Singh and Barnabas Poczos

Machine Learning 10-701/15-781
Apr 22, 2014

Slides courtesy: Carlos Guestrin
How many points can a linear boundary classify exactly? (1-D)

There exists placement s.t. all labelings can be classified
How many points can a linear boundary classify exactly? (2-D)

3 pts

4 pts

There exists placement s.t. all labelings can be classified
How many points can a linear boundary classify exactly? (d-D)

\[w_0 + \sum_{i=1}^{d} w_i x_i \]

d+1 pts

How many parameters in linear Classifier in d-Dimensions?

There exists placement s.t. all labelings can be classified
PAC bound using VC dimension

• Number of training points that can be classified exactly is VC dimension!!!
 – Measures relevant size of hypothesis space, as with decision trees with k leaves

$$\text{error}_\text{true}(h) \leq \text{error}_\text{train}(h) + 8\sqrt{\frac{VC(H) \left(\ln \frac{m}{VC(H)} + 1 \right) + \ln \frac{8}{\delta}}{2m}}$$

Instead of $\ln |H|$
Shattering a set of points

Definition: a **dichotomy** of a set S is a partition of S into two disjoint subsets.

Definition: a set of instances S is **shattered** by hypothesis space H if and only if for every dichotomy of S there exists some hypothesis in H consistent with this dichotomy.

For all binary partitions of S into (S^+, S^-), there exists a classifier in H that classifies S^+ as positive and S^- as negative.
VC dimension

Definition: The Vapnik-Chervonenkis dimension, $VC(H)$, of hypothesis space H defined over instance space X is the size of the largest finite subset of X shattered by H. If arbitrarily large finite sets of X can be shattered by H, then $VC(H) \equiv \infty$.

- You pick set of points
- Adversary assigns labels
- You find a hypothesis in H consistent with the labels

If $VC(H) = k$, then for all $k+1$ points, there exists a labeling that cannot be shattered (can’t find a hypothesis in H consistent with it)
PAC bound using VC dimension

- Number of training points that can be classified exactly is VC dimension!!!
 - Measures relevant size of hypothesis space, as with decision trees with k leaves
 - Bound for infinite dimension hypothesis spaces:

$$w.p. \geq 1-\delta$$

$$\text{error}_{true}(h) \leq \text{error}_{train}(h) + 8\sqrt{\frac{VC(H) \left(\ln \frac{m}{VC(H)} + 1 \right)}{2m} + \ln \frac{8}{\delta}}$$

| linear classifiers | 2D | large | small | 10,000 D | small | large |
Examples of VC dimension

• Linear classifiers:
 – $\text{VC}(H) = d + 1$, for d features plus constant term
Another VC dim. example - What can we shatter?

• What’s the VC dim. of decision stumps in 2d?

VC(H) ≥ 3
Another VC dim. example - What can’t we shatter?

• What’s the VC dim. of decision stumps in 2d?
 If VC(H) = 3, then for all placements of 4 pts, there exists a labeling that can’t be shattered.

3 collinear

1 in convex hull of other 3

quadrilateral
Examples of VC dimension

• Linear classifiers:
 – $\text{VC}(H) = d+1$, for d features plus constant term

• Decision stumps: $\text{VC}(H) = d+1$ (3 if $d=2$)
Another VC dim. example - What can we shatter?

• What’s the VC dim. of axis parallel rectangles in 2d? \(\text{sign}(1 - 2*1_x \in \text{rectangle}) \)

\[\text{VC}(H) \geq 3 \]
Another VC dim. example - What can’t we shatter?

• What’s the VC dim. of axis parallel rectangles in 2d? \(\text{sign}(1 - 2*1_x \in \text{rectangle}) \)

• Some placement of 4 pts can’t be shattered
Another VC dim. example - What can’t we shatter?

- What’s the VC dim. of axis parallel rectangles in 2d?
 \[\text{sign}(1 - 2 \cdot 1_{x \in \text{rectangle}}) \]

 If VC(H) = 4, then for all placements of 5 pts, there exists a labeling that can’t be shattered

4 collinear

2 in convex hull of other 3

1 in convex hull of other 4

pentagon
Examples of VC dimension

- Linear classifiers: $\text{VC}(H) = d+1$, for d features plus constant term

- Decision stumps: $\text{VC}(H) = d+1$

- Axis parallel rectangles: $\text{VC}(H) = 2d$ (4 if $d=2$)

- 1 Nearest Neighbor: $\text{VC}(H) = \infty$
VC dimension and size of hypothesis space

• To be able to shatter \(m\) points, how many hypothesis do we need?
 \[2^m\] labelings \(\Rightarrow\) \(|H| \geq 2^m\)

Given \(|H|\) hypothesis can hope to shatter max \(m = \log_2 |H|\) points

\[\text{VC}(H) \leq \log_2 |H|\]

So VC bound is tighter.
Summary of PAC bounds

With probability $\geq 1-\delta$,

1) for all $h \in H$ s.t. $\text{error}_{\text{train}}(h) = 0$,
 \[\text{error}_{\text{true}}(h) \leq \varepsilon = \frac{\ln |H| + \ln \frac{1}{\delta}}{m} \]

2) for all $h \in H$,
 \[|\text{error}_{\text{true}}(h) - \text{error}_{\text{train}}(h)| \leq \varepsilon = \sqrt{\frac{\ln |H| + \ln \frac{1}{\delta}}{2m}} \]

3) for all $h \in H$,
 \[|\text{error}_{\text{true}}(h) - \text{error}_{\text{train}}(h)| \leq \varepsilon = 8\sqrt{\frac{\text{VC}(H) \left(\ln \frac{m}{\text{VC}(H)} + 1 \right) + \ln \frac{8}{\delta}}{2m}} \]

Finite hypothesis space

Infinite hypothesis space
Using PAC bound to pick a hypothesis

- **Empirical Risk Minimization (ERM)**

\[\hat{h} = \arg \min_{h \in H} \text{error}_{\text{train}}(h) \]

\[\text{error}_{\text{true}}(\hat{h}) \leq \text{error}_{\text{train}}(\hat{h}) + \epsilon \quad \text{w.p.} \geq 1 - \delta \]

\[= \min_{h \in H} \text{error}_{\text{train}}(h) + \epsilon \]

\[\leq \min_{h \in H} \text{error}_{\text{true}}(h) + 2\epsilon \]

- If training error is best possible in \(H \), then true error is also close to best possible in \(H \) (with high probability)
Using PAC bound for model selection

- **Structural Risk Minimization (SRM)**

 model spaces $H_1, H_2, ..., H_k, ...$ of increasing complexity

 $|H_1| \leq |H_2| \leq ... \leq |H_k| \leq ...$ OR

 $VC(H_1) \leq VC(H_2) \leq ... \leq VC(H_k) \leq ...$

 For each hypothesis space H_k, we know with probability $\geq 1 - \delta_k$, for all $h \in H_k$

 $error_{true}(h) \leq error_{train}(h) + \varepsilon(H_k)$ depends on $|H_k|$ or $VC(H_k)$

 As complexity k increases, $error_{train}$ goes down but $\varepsilon(H_k)$ goes up – Bias variance tradeoff
Using PAC bound for model selection

- **Structural Risk Minimization (SRM)**

ERM within each model space

\[
\hat{h}_k = \arg \min_{h \in H_k} \text{error}_{\text{train}}(h)
\]

Choose model space (minimize upper bound on true error)

\[
\hat{k} = \arg \min_{k \geq 1} \{ \text{error}_{\text{train}}(\hat{h}_k) + \varepsilon(H_k) \}
\]

Final hypothesis

\[
\hat{h} = \hat{h}_{\hat{k}}
\]
Using PAC bound for model selection

- Structural Risk Minimization (SRM)

\[
\hat{k} = \arg \min_{k \geq 1} \left\{ \text{error}_{\text{train}}(\hat{h}_k) + \epsilon(H_k) \right\}
\]

High probability Upper bound on true risk

\[C(h) = \epsilon(H_k) \] - large for complex models

Prediction Error

empirical risk

underfitting

Best Model

overfitting

Complexity
Using PAC bound for model selection

• How good is the final hypothesis picked by SRM relative to best hypothesis in the best class k*?

\[
\text{error}_{\text{true}}(\hat{h}) = \text{error}_{\text{true}}(\hat{h}_{k^*}) \\
\leq \text{error}_{\text{train}}(\hat{h}_{k^*}) + \epsilon(H_{k^*}) \\
= \min_k \{ \text{error}_{\text{train}}(\hat{h}_k) + \epsilon(H_k) \} \\
= \min_k \{ \min_{h \in H_k} \text{error}_{\text{train}}(h) + \epsilon(H_k) \} \\
\leq \min_k \{ \min_{h \in H_k} \text{error}_{\text{true}}(h) + 2\epsilon(H_k) \} \\
\leq \min_k \text{error}_{\text{train}}(h_k) + 2\epsilon(H_k)
\]

w.p. \(\geq 1 - \delta \)

\(\delta = \sum_k \delta_k \leq \min_{h \in H_{k^*}} \text{error}_{\text{true}}(h) + 2\epsilon(H_{k^*}) \)
Using PAC bound for model selection

• What if we picked the hypothesis using ERM over the union of all spaces $U_k H_k$?

$$\hat{h} = \arg \min_{h \in H_{1,\ldots,k,\ldots}} \text{error}_{\text{train}}(h)$$
What you need to know

• PAC bounds on true error in terms of empirical/training error and complexity of hypothesis space
• Complexity of the classifier depends on number of points that can be classified exactly
 – Finite case – Number of hypothesis
 – Infinite case – VC dimension
• Bias-Variance tradeoff in learning theory
• Empirical and Structural Risk Minimization
 – But often bounds too loose in practice
• Other bounds – Margin based, Mistake bounds, ...