Graphical Models

Aarti Singh & Barnabas Poczos
Slides Courtesy: Carlos Guestrin

Machine Learning 10-701/15-781
Mar 25, 2014
Topics in Graphical Models

• Representation
 – Which joint probability distributions does a graphical model represent?

• Inference
 – How to answer questions about the joint probability distribution?
 • Marginal distribution of a node variable
 • Most likely assignment of node variables

• Learning
 – How to learn the parameters and structure of a graphical model?
Inference

• Possible queries:
 1) Marginal distribution e.g. $P(S)$
 Posterior distribution e.g. $P(F|H=1)$

 2) Most likely assignment of nodes
 $\arg \max_{f,a,s,n} P(F=f,A=a,S=s,N=n | H=1)$
Inference

• Possible queries:
 1) Marginal distribution e.g. $P(S)$
 Posterior distribution e.g. $P(F|H=1)$

$$P(F|H=1) = \frac{P(F, H=1)}{P(H=1)}$$

$$= \frac{P(F, H=1)}{\sum_{f} P(F=f, H=1)}$$

$\propto P(F, H=1)$

will focus on computing this, posterior will follow with only constant times more effort
Marginalization

Need to marginalize over other vars

\[P(S) = \sum_{f,a,n,h} P(f,a,S,n,h) \]

\[P(F,H=1) = \sum_{a,s,n} P(F,a,s,n,H=1) \]

To marginalize out \(n \) binary variables, need to sum over \(2^n \) terms

Inference seems exponential in number of variables!

Actually, inference in graphical models is NP-hard 😞
Bayesian Networks Example

- 18 binary attributes

- Inference
 - $P(\text{BatteryAge} | \text{Starts}=f)$

- need to sum over 2^{16} terms!

- Not impressed?
 - HailFinder BN – more than $3^{54} = 58149737003040059690390169$ terms
Fast Probabilistic Inference

\[P(F, H=1) = \sum_{a,s,n} P(F,a,s,n,H=1) \]

\[= \sum_{a,s,n} P(F)P(a)P(s|F,a)P(n|s)P(H=1|s) \]

\[= P(F) \sum_{a} P(a) \sum_{p} P(s|F,a)P(H=1|s) \sum_{n} P(n|s) \]

Push sums in as far as possible

Distributive property: \[x_1z + x_2z = z(x_1 + x_2) \]

2 multiply \quad 1 multiply
Fast Probabilistic Inference

\[P(F, H=1) = \sum_{a,s,n} P(F, a, s, n, H=1) \]
\[= \sum_{a,s,n} P(F) P(a) P(s \mid F, a) P(n \mid s) P(H=1 \mid s) \]
\[= P(F) \sum_a P(a) \sum_s P(s \mid F, a) P(H=1 \mid s) \sum_n P(n \mid s) \]
\[= P(F) \sum_a P(a) g_1(F, a) \]
\[= P(F) g_2(F) \]

(Potential for) exponential reduction in computation!

Flu

Allergy

Sinus

Headache

Nose

\(2^n \text{ vs. } n \ 2^k \text{ multiplies}\)
\(k - \text{scope of (number of variables in) largest factor}\)
Fast Probabilistic Inference – Variable Elimination

\[P(F, H=1) = \sum_{a,s,n} P(F)P(a)P(s|F,a)P(n|s)P(H=1|s) \]

\[= P(F) \sum_a P(a) \sum_s P(s|F,a)P(H=1|s) \sum_n P(n|s) \]

(Potential for) exponential reduction in computation!
Variable Elimination – Order can make a HUGE difference

\[
P(F, H=1) = \sum_{a,s,n} P(F)P(a)P(s|F,a)P(n|s)P(H=1|s)
\]

\[
= P(F) \sum_a P(a) \sum_s P(s|F,a)P(H=1|s) \sum_n P(n|s)
\]

\[
P(F, H=1) = P(F) \sum_a P(a) \sum_n \sum_s P(s|F,a)P(n|s)P(H=1|s)
\]

(Potential for) exponential reduction in computation!
Variable Elimination – Order can make a HUGE difference

\[P(X_1) = \sum_{Y,X_2,\ldots,X_n} P(Y)P(X_1|Y) \prod_{i=2}^{n} P(X_i|Y) \]

\[= \sum_{Y,X_3,\ldots,X_n} P(Y)P(X_1|Y) \prod_{i=3}^{n} P(X_i|Y) \sum_{X_2} P(X_2|Y) \]

\[= \sum_{X_2,\ldots,X_n} \sum_{Y} P(Y)P(X_1|Y) \prod_{i=2}^{n} P(X_i|Y) \]

1 - scope of largest factor

\[g(Y) \]

n - scope of largest factor

\[g(X_1,X_2,\ldots,X_n) \]
Variable Elimination Algorithm

- Given BN – DAG and CPTs (initial factors – p(x_i|pa_i) for i=1,..,n)
- Given Query P(X|e) ≡ P(X,e) X – set of variables e - evidence
- Instantiate evidence e e.g. set H=1
- Choose an ordering on the variables e.g., X(1), ..., X(n)
- For i = 1 to n, If X(i) ∉{X,e} (i.e. need to marginalize it out)
 - Collect factors g_1,...,g_k that include X(i)
 - Generate a new factor by eliminating X(i) from these factors
 \[g = \sum_{X_i} \prod_{j=1}^{k} g_j \]
 - Variable X(i) has been eliminated!
 - Remove g_1,...,g_k from set of factors but add g
- Normalize P(X,e) to obtain P(X|e)
Variable elimination order:
- Consider undirected version (ignore edge directions)
- Start from “leaves” up
- find topological order
- eliminate variables in that order

Does not create any factors bigger than original CPTs

For polynomials, inference is linear in # variables (vs. exponential in general)!
Complexity for graphs with loops

- Loop – undirected cycle

Linear in # variables but exponential in size of largest factor generated!

Moralize graph (connect parents into a clique & drop direction of all edges)

When you eliminate a variable, add edges between its neighbors
Complexity for graphs with loops

- Loop – undirected cycle

Var eliminated
S
B
D
C
T
O

Factor generated
$g_1(C,B)$
$g_2(C,O,D)$
$g_3(C,O)$
$g_4(T,O)$
$g_5(O)$
$g_6(X)$

Linear in # variables but exponential in size of largest factor generated ~ tree-width (max clique size-1) in resulting graph!
Example: Large tree-width with small number of parents

At most 2 parents per node, but tree width is \(O(\sqrt{n})\)

Compact representation \(\not\Rightarrow\) Easy inference 😞
Choosing an elimination order

- Choosing best order is NP-complete
 - Reduction from MAX-Clique
- Many good heuristics (some with guarantees)
- Ultimately, can’t beat NP-hardness of inference
 - Even optimal order can lead to exponential variable elimination computation
- In practice
 - Variable elimination often very effective
 - Many (many many) approximate inference approaches available when variable elimination too expensive
Inference

- Possible queries:
 2) Most likely assignment of nodes
 \[\text{arg max } P(F=f,A=a,S=s,N=n|H=1) \]

Use Distributive property:
\[\max(x_1 z, x_2 z) = z \max(x_1, x_2) \]

2 multiply 1 mulitply
Topics in Graphical Models

• Representation
 – Which joint probability distributions does a graphical model represent?

• Inference
 – How to answer questions about the joint probability distribution?
 • Marginal distribution of a node variable
 • Most likely assignment of node variables

• Learning
 – How to learn the parameters and structure of a graphical model?
Given set of m independent samples (assignments of random variables),

find the best (most likely?) Bayes Net (graph Structure + CPTs)
Learning the CPTs (given structure)

For each discrete variable X_k

Compute MLE or MAP estimates for

$$p(x_k | \text{pa}_k)$$

Recall

MLE: $P(X_i = x_i \mid X_j = x_j) = \frac{\text{Count}(X_i = x_i, X_j = x_j)}{\text{Count}(X_j = x_j)}$

MAP: Add pseudocounts
MLEs decouple for each CPT in Bayes Nets

• Given structure, log likelihood of data

\[
\log P(D \mid \theta \mathcal{G}, \mathcal{G})
\]

\[
= \log \prod_{j=1}^{m} P(f^{(j)}) P(a^{(j)}) P(s^{(j)} \mid f^{(j)}, a^{(j)}) P(h^{(j)} \mid s^{(j)}) P(n^{(j)} \mid s^{(j)})
\]

\[
= \sum_{j=1}^{m} \left[\log P(f^{(j)}) + \log P(a^{(j)}) + \log P(s^{(j)} \mid f^{(j)}, a^{(j)}) + \log P(h^{(j)} \mid s^{(j)}) + \log P(n^{(j)} \mid s^{(j)}) \right]
\]

\[
= \sum_{j=1}^{m} \log P(f^{(j)}) + \sum_{j=1}^{m} \log P(a^{(j)}) + \sum_{j=1}^{m} \log P(s^{(j)} \mid f^{(j)}, a^{(j)}) + \sum_{j=1}^{m} \log P(h^{(j)} \mid s^{(j)}) + \sum_{j=1}^{m} \log P(n^{(j)} \mid s^{(j)})
\]

Depends only on \(\theta_F \), \(\theta_A \), \(\theta_{S \mid F, A} \), \(\theta_{H \mid S} \), and \(\theta_{N \mid S} \).

Can computer MLEs of each parameter independently!
Information theoretic interpretation of MLE

\[
\log P(D \mid \theta_G, G) = \sum_{j=1}^{m} \sum_{i=1}^{n} \log P \left(X_i = x_i^{(j)} \mid \text{Pa}_{X_i} = x_{\text{Pa}X_i}^{(j)} \right)
\]

\[
= \sum_{i=1}^{n} \sum_{x_i} \sum_{x_{\text{Pa}X_i}} \text{count}(X_i = x_i, \text{Pa}_{X_i} = x_{\text{Pa}X_i}) \log P \left(X_i = x_i \mid \text{Pa}_{X_i} = x_{\text{Pa}X_i} \right)
\]

Plugging in MLE estimates: ML score

\[
\log \hat{P}(D \mid \hat{\theta}_G, G) = \sum_{j=1}^{m} \sum_{i=1}^{n} \log \hat{P} \left(x_i^{(j)} \mid x_{\text{Pa}X_i}^{(j)} \right)
\]

\[
= m \sum_{i=1}^{n} \sum_{x_i} \sum_{x_{\text{Pa}X_i}} \hat{P}(x_i, x_{\text{Pa}X_i}) \log \hat{P} \left(x_i \mid x_{\text{Pa}X_i} \right)
\]

Reminds of entropy
Information theoretic interpretation of MLE

\[
\log \hat{P}(\mathcal{D} \mid \hat{\theta}_G, \mathcal{G}) = m \sum_{i=1}^{n} \sum_{x_i} \sum_{x_{\text{Pa}_X_i}} \hat{P}(x_i, x_{\text{Pa}_X_i}) \log \hat{P}(x_i \mid x_{\text{Pa}_X_i})
\]

\[
= -m \sum_{i=1}^{n} \hat{H}(X_i \mid \text{Pa}_{X_i})
\]

\[
= m \sum_{i=1}^{n} [\hat{I}(X_i, \text{Pa}_{X_i}) - \hat{H}(X_i)]
\]

ML score for graph structure \mathcal{G}

\[
\arg \max_{\mathcal{G}} \log \hat{P}(\mathcal{D} \mid \hat{\theta}_G, \mathcal{G}) = \arg \max_{\mathcal{G}} \sum_{i=1}^{n} \hat{I}(X_i, \text{Pa}_{X_i})
\]

Doesn’t depend on graph structure \mathcal{G}
ML – Decomposable Score

• Log data likelihood

\[\log \hat{P}(D \mid \hat{\theta}_g, \mathcal{G}) = m \sum_{i=1}^{n} [\hat{I}(X_i, \text{Pa}_{X_i}) - \hat{H}(X_i)] \]

• Decomposable score:
 – Decomposes over families in BN (node and its parents)
 – Will lead to significant computational efficiency!!!
 – Score\((G : D) = \sum_i \text{FamScore}(X_i \mid \text{Pa}_{X_i} : D)\)
How many trees are there?

- Trees – every node has at most one parent
- n^{n-2} possible trees (Cayley’s Theorem)

Nonetheless – Efficient optimal algorithm finds best tree!
Scoring a tree

\[
\arg \max_{\mathcal{G}} \log \hat{P}(\mathcal{D} | \hat{\theta}_\mathcal{G}, \mathcal{G}) = \arg \max_{\mathcal{G}} \sum_{i=1}^{n} \hat{I}(X_i, \text{Pa}_{X_i})
\]

Equivalent Trees (same score): \(I(A,B) + I(B,C)\)

Score provides indication of structure:

- I(A,B) + I(B,C)
- I(A,B) + I(A,C)
Chow-Liu algorithm

- For each pair of variables X_i, X_j
 - Compute empirical distribution:
 $$\hat{P}(x_i, x_j) = \frac{\text{Count}(x_i, x_j)}{m}$$
 - Compute mutual information:
 $$\hat{I}(X_i, X_j) = \sum_{x_i, x_j} \hat{P}(x_i, x_j) \log \frac{\hat{P}(x_i, x_j)}{\hat{P}(x_i)\hat{P}(x_j)}$$

- Define a graph
 - Nodes X_1, \ldots, X_n
 - Edge (i,j) gets weight $\hat{I}(X_i, X_j)$

- Optimal tree BN
 - Compute maximum weight spanning tree (e.g. Prim’s, Kruskal’s algorithm $O(n\log n)$)
 - Directions in BN: pick any node as root, breadth-first-search defines directions
Chow-Liu algorithm example
Scoring general graphical models

• Graph that maximizes ML score -> complete graph!
• Information never hurts
 \[H(A|B) \geq H(A|B,C) \]

• Adding a parent always increases ML score
 \[I(A,B,C) \geq I(A,B) \]

• The more edges, the fewer independence assumptions, the higher the likelihood of the data, but will overfit...

• Why does ML for trees work?
 Restricted model space – tree graph
Regularizing

• Model selection
 – Use MDL (Minimum description length) score
 – BIC score (Bayesian Information criterion)

• Still NP –hard

Theorem: The problem of learning a BN structure with at most d parents is **NP-hard for any (fixed) $d > 1$** (Note: tree $d=1$)

• Mostly heuristic (exploit score decomposition)
• Chow-Liu: provides best tree approximation to any distribution.
• Start with Chow-Liu tree. Add, delete, invert edges. Evaluate BIC score
What you should know

• Learning BNs
 – Maximum likelihood or MAP learns parameters
 – ML score
 • Decomposable score
 • Information theoretic interpretation (Mutual information)
 – Best tree (Chow-Liu)
 – Other BNs, usually local search with BIC score