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Clustering



What is clustering?

Clustering:

The process of grouping a set of objects into classes of similar objects

—high intra-class similarity
—low inter-class similarity

—It is the most common form of unsupervised learning

Clustering 1s subjective
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What is Similarity?

Hard to define! But we know it when we see it

The real meaning of similarity is a philosophical question. We will take a more
pragmatic approach: think in terms of a distance (rather than similarity)
between random variables. 5



The K- means Clustering Problem



K-means Clustering Problem

Given a set of observations (xz1,o,...,xn), Where z; € R%

K-means clustering problem:

Partition the n observations into K sets (K= n) S ={S,, S,, ..., S}
such that th& sets minimize the within-cluster sum of squares:

‘jrgmmz > - n ()X

i=1x,€ES5;
where p; is the mean of points in set S




K-means Clustering Problem

Given a set of observations (xz1,o,...,xn), Where z; € R%

K-means clustering problem:

Partition the n observations into K sets (K= n) S = {S,, S,, ..., Sy}
such that the sets minimize the within-cluster sum of squares:

arg mmz > Hx

1=1x,€5;
where p; is the mean of points in set §;.

How hard is this problem?

The problem is NP hard, but there are good heuristic algorithms
that seem to work well in practice:

e K-means algorithm

e mixture of Gaussians 8




K-means Clustering Alg: Step 1
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e Given n objects.
e

* Guess the cluster centers ky, ky, K3 (They were p,...,u5 in the previous slide) | o




K-means Clustering Alg: Step 2

e Build a Voronoi diagram based on the cluster centers k;, k,, k5,

e Decide the class memberships of the n objects by assigning them to the
nearest cluster centers k;, k,, K. 10




K-means Clustering Alg: Step 3

o Re-estimate the cluster centers (aka the centroid or mean), by

assuming the memberships found above are correct. »




K-means Clustering Alg: Step 4

e Build a new Voronoi diagram.

e Decide the class memberships of the n objects based on this diagram b




K-means Clustering Alg: Step 5

e Re-estimate the cluster centers.

13




K-means Clustering Alg: Step 6

e Stop when everything is settled.

(The Voronoi diagrams don’t change anymore) y




K- means Clustering Algorithm

Algorithm

Input

— Data + Desired number of clusters, K
Initialize

— the K cluster centers (randomly if necessary)
Iterate

1. Decide the class memberships of the n objects by assigning them to the
nearest cluster centers

2. Re-estimate the K cluster centers (aka the centroid or mean), by
assuming the memberships found above are correct.

Termination
— If none of the n objects changed membership in the last iteration, exit.

Otherwise go to 1. 15



K- means Algorithm

Computation Complexi

[ At each iteration,

— Computing distance between each of the 77 objects and the K cluster
centers is O(Kn). ‘

— Computing cluster centers: Each object gets added once to some

cluster: O(n).

O Assume these two steps are each done once for ¢ iterations: O(¢Kn).

Can you prove that the K-means algorithm guaranteed to terminate?

16




Seed Choice

17



Seed Choice
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Seed Choice

The results of the K- means Algorithm can vary based on random seed
selection.

O Some seeds can result in poor convergence rate, or convergence to
sub-optimal clustering.

d K-means algorithm can get stuck easily in local minima.

— Select good seeds using a heuristic (e.g., object least similar to any
existing mean)

— Try out multiple starting points (very important!!!)

— Initialize with the results of another method.

19




Alternating Optimization

20



K- means Algorithm (more formally)

0 Randomly initialize k centers

pl = (l, ..., n%)

d Classify: At iteration t, assign each point (j € {1,...,n}) to nearest center:

Ct(j) « arg mz_in | H§ — a;j||2 Classification at iteration ¢

O Recenter: ; is the centroid of the new sets:

t+1 . 2
p T —argmin 3 fu—a

§:Cl(j)=i _
Re-assign new cluster
centers at iteration £ 21



What is K-means optimizing?

O Define the following potential function Fof centers x and
point allocation C

Lu = (uw)
[¢=(CQ),...CH)

F(p,C) = Z Iy — 35';||
\_/ > Two equivalent versions

D S
\’i=1j10(j)=%' )

[ Optimal solution of the K-means problem:

. mEEeO) n




K-means Algorithm

Optimize the potential function:

n K
. . N2 mi 2
min F(p, 0) = min 2 ey —=5l° = min 2 2 =l

K-means algorltm:\

(1) Fix pu, Optimize C

| 12
g<_1>,o£”25?...,o<>2"“0<a> il —jilgn('r;Hucm )l

_/

Exactly first step
Q\A b\\ Assign each point to the nearest cluster center

(2) Fix C, Optimize pu

— Kk T K
min > Y w2 =X min Y (lp— 2

=R =1 5:0() =i i=1 = j.C(j)=i B

=
Exactly 2" step (re-center)
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K-means Algorithm

Optimize the potential function:

K-means algorithm: (coordinate descent on F)

(1) Fix u, Optimize C  Expectation step

(2) Fix C, Optimize p Maximization step

Today, we will see a generalization of this approach:
EM algorithm 24



Gaussian Mixture Model




Density Estimation

Generative approach

(1’
p(x1,...,znl0) = |] p(x;]0)
i—1

There is a latent parameter @
For all i, draw observed xi given @

What if the basic model doesn’t fit all data?

= Mixture modelling, Partitioning algorithms
Different parameters for different parts of the domain. [61, ..., 0K]

26



Partitioning Algorithms

e K-means
—hard assignment: each object belongs to only one cluster
0, € {01,...,0}
e Mixture modeling

—soft assignment: probability that an object belongs to a cluster

(ry, 1), 7 2 0, Dimymi = 1

27



Gaussian Mixture Model

Mixture of K Gaussians distributions: (Multi-modal distribution)

e There are K components

 Component /has an associated mean vector 4

Component /generates data from N ( L. ZZ)

Each data point is generated using this process:
1) Choose component_¢ with probability m; = P(y = 1)
2) Datapoint z~ g(pi, )

28



Gaussian Mixture Model

Mixture of K Gaussians distributions: (Multi-modal distribution)
Hidden variable

|

p(xly =14) = N(ui, 2;)

K
p(2) = Y. plaly = Py =)

b= !

Observed Mixture Mixture
data component proportion

29



Mixture of Gaussians Clustering

Assume that

>, = o2, for simplicity.

p(zly = 1) = N(@ﬁ)

ply=1) =m;

All prameters /,Ll,...,[.LK,O'Q,Trl,...,’/TK are known.

A

For a given x we want to decide if it belongs to cluster i or cluster j

Cluster x based on posteriors:

Ply = ilzD
lO%P(y = JlzD

P(£U|y = 1) P(y = i) /pt%)

9 p(aly = )Py = )/7) _
. /:1 2

p(zly =4)m o T exp(202||a: il <)

p(zly = j)m; m; exp(5oslle — 1512)

— |log

30



Mixture of Gaussians Clustering

Assume that
>; = oI, for simplicity. p(zly = i) = N(u;,02T)

ply =1) = m “1""7“1(70'2,771,..,,71-}{ re KNOWN.
: | )
P(y = jlx) p(zly = j)7; us exp(2_712||3; — 1]]2)

=106 J0c _ L x-pll* L px- il
s nGh\ /4 26° \_//4—\( "
’ Ay -2x" Py 415 M)
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NUM'\, lXWA,

] ) _ ’——"
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ol 2

-
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Piecewise linear decision boundary




MLE for GMM

What if we don't know the parameters? ;... up, 02,1, TR
= Maximum Likelihood Estimate (MLE) / B
g_=[u\1,...,’u£,cf 71'1,...,71'5] u,

My '

argmaxH (z;0) —
A= LX) O

n M - ri{-;

ik N
= arg max P(y; = i|0)p(x;|y; = i)0)
T WG 6 )
—1
= argmax H Z i ,—exp( Sl — will®)
J=1=l 2o _,__-«——) 33




K-means and GMM

—1
MLE: 0 = arg max 7| — exp( ;i — il %)
JEE s (s l7; —

What happens if we assume hard assignment?
P(y; = i) = 1ifi = C(j)

= 0 otherwise

In this case the MLE estimation: P(y; =1, ,(0)
A
arg max H P(x;|¢) = arg max 1[I > P(y; =4) > exp( 2||% il )
j=1 j= 12_1 2o
—1
= arg max H exp( ||a:j ,uc(j)HQ)
j=1

n
N — .
min ; |z — nopHll©) = arg min F(p, C)

Same as K-means!!! 34



General GMM

General GMM —Gaussian Mixture Model (Multi-modal distribution)

e There are Kcomponents

e Component /has an associated
mean vector

e Each component generates data
from a Gaussian with mean p,
and covariance matrix X;. Each
data point is generated according
to the following recipe:

1) Pick a component at random: Choose component i
with probability A(y=i)  X).-- & Z7i = |

2) Datapoint x~ N(u; ,Z;) A
,—————\

35



General GMM

GMM —Gaussian Mixture Model (Multi-modal distribution)

p(xly = 1) = N(p;, ;)

/) o
K NN i,
) = 3 platy = 0Py T 0 ‘;
Mixture Mixture ‘

component proportion

36



General GMM

Assume that
O = [y s bRy 21y s 2, T1,---,Tk] Are known.

plaly=1)=Nu.Z) 61
ply =1) = m;
Clustering based on posteriors:
P(y = ilz) °
P(y = jlz) °
p(zly = i) P(y = 1i)/p(z)
p(zly = )Py =j)/p(x)
7Tj— e €XP {—%(w — )T (2 - M)}

log

= |log

o pely=9)m V]2rZ|
_Iogp(mly:j)ﬁ.—logﬂ‘ 1 exp[—l(m— Vs~ Lz — ,)}
J I J2rs | 2 K j K
='Wz +wlz+c
Depends ON piq, .oy Ky 221y e oy 22y Ty« oy T

“Quadratic Decision boundary” — second-order terms don’t cancel out 37



General GMM MLE Estimation

What if we don't kKnow 6 = (a7, .. ix, 51, ..., S, 71, -, 7]

/V’w' GTP\O1

= Maximize marginal likelihood (MLE) P(X5) €)

arg max H 4\5(%“9 )) = arg max H Z P(y; = i,1;0)

- j=1 j=1li=1 Ne——

//,“ e) % /\/\ ——
é Plags= iC = arg mgax H > P(yg = ZIQ)p(arjlyj 6)

= — N
=it TVREA)
s — N s,
= arg max H Z T |27rZ |exp { 2(3:] [,LZ) > (= uz)]

i ==

* Set 47— Iog Prob(...) = 0, and solve for pu;.

Non-linear, non-analytically solvable

* Use gradient descent. Doable, but often slow
* Use EM.

38



Expectation-Maximization (EM)

A general algorithm to deal with hidden data, but we will study it in
the context of unsupervised learning (hidden class labels =
clustering) first.

e EM is an optimization strategy for objective functions that can be interpreted
as likelihoods in the presence of missing data.

e EM is “simpler” than gradient methods:
No need to choose step size.

e EM is an iterative algorithm with two linked steps:
o E-step: fill-in hidden values using inference
o M-step: apply standard MLE/MAP method to completed data

o We will prove that this procedure monotonically improves the likelihood (or

leaves it unchanged). EM always converges to a local optimum of the
likelihood.

39



Expectation-Maximization (EM)

A simple case: o\

. [We have unlabeled data x,, x,, ..., x, X 6)7)\

. {We know there are K classes

e | We know P(y=1)=m,, P(y=2)=n, P(y=3) ... P(y=K)=m

. {We know common variance ¢2-T J\

e We don’t know 4, W, ... ik , and we want to learn them /‘4«; GIP\

We can writ n
p(xq,... ,mﬂ@ = H p(zjlp1,. .., nk) Independent data

(=1 )
K
> plxj,y; = ilpl, e pK) Marginalize over class
=1=1 " (M4)6 ) T
n —~
= 11 > r(zjly; =4 p1,- - nr)p(y; = 1)
j=1i=1

-

T
J=

K 1 5
exp(—o—sllzj — will)m = learn py, uy, ... U
= o 40

T
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Expectation (E) step

&) .
We want to learn: 9=m M GQ(A *6{'-“@

Our estimator at the end of iteration t-1; 6'~! :,_[Htl_l b 1]
: . : _ A
At iteration t, construct function Q: K. M(x5 | I"L, ,G )
NS —
-— ——  ~—
L= — —
E step et
t—1 t—1 —1
P(yj_z|$379 )—P(yj—""xjaﬂl a---ﬂu[{ )
OCED(ZE | i b1 Y P(y; =49)
R(’ 7 yjl_ M1 e :NK Y; —
Ly x exp(—~5]|; i D L
t—1
exp(——IIfBg i 12
1 £\
E L exp(—5sllzy — pf 2

Equivalent to assigning clusters to each data point in K-means in a soft way
41



Maximization (M) step

T
QNI = Y 3 P(y; = ila;,0' 1) log P(x,y; = i[0")

n K
=3 N P(y; =ilz;, 6" Dlog P(z;|y; = 4,6") + log P(y; = i[6")]
j=1i=1 -7\ ~ / \ % /
1 T
o exp(— sl — ) T
. _
We calculated these weights in the E step —~

t—1 _ t—1
o |R; ;"= Py; =ilz;,0" ") Joint distribution is simple

Mstep At |terat|on t, maximize function Q in 6t
n {»z.l L UX"’/V"(-‘AL
QUuf]0' 1) o Z@t 1(——||:cj PRy %2 R (zs 7%
1 )

7=1 4,2 =
2.QUile ) =0 = 3 R Mea—u) =0
i 7=1

— Rt_.l P(y;=i _Qt—l)

— W4T 4 - 7,7 _ yj ’Ll.CUJ,

Z 122 wWhere w,; = , a
j=1 IS RS T Y Pyl 0

Equivalent to updating cluster centers in K-means 42



EM for spherical, same variance

GMMs

E-step

Compute “expected” classes of all datapoints for each class
1 t—1)2y. t—1
exp(— 525 llej — pt1?)x!

1 t—1 t—1
Z{(:l eXp(—?ij — My ||2)7Ti

P(y; = ilz;,0'"1) =

In K-means “E-step” we do hard assignment. EM does soft assignment

M-step

Compute Max of function Q. [I.e. update p given our data’s class
membership distributions (weights) ]

T
t_ . P(y;=i|z;,0t 1)
My = Z W;Tj  where w; = J 2
j=1 T Yy Ply=ilz 0 1)

Iterate. Exactly the same as MLE with weighted data. 43



EM for general GMMs

The more general case:

e We have unlabeled data x,, x,, ..., x,,

e We know there are K classes

e We don’t know P(y=1)=n,, P(y=2)=n, P(y=3) ... P(y=K)=m,
e Wedon't know X,,... £,

e We don’t know py, W, ... Uk

We want to learn: 0 = [lu’].a"')/"’Kaﬂ-l:"'77TK7217'":ZK]

Our estimator at the end of iteration t-1:
Qt L= [H’ 7"':/1’%[{19 i_l ﬂ_K 7Zt 1 '727};1]
The idea is the same:

At iteration t, construct function Q (E step) and maximize it in 6t (M step)

44



EM for general GMMs

At iteration t, construct function Q (E step) and maximize it in 6t (M step)

E-step

Compute “expected” classes of all datapoints for each class

_ Nl = Hm

— t—1 <t—1y_t—1
Zszl N(“/’jmi 72?: )’fTi

R?E,}l = P(y; = i|z;,0" 1)

M-step -2Q(0H0*"1) =0
Compute MLEs given our data’s class membership distributions (weights)

n Rri1
/,og = Z w;ir; where w; = —; ”’JRt_l
j=1 Zj:l 0]
n
T
== wiley —pd)” (x5 — 1)
=1

t — 1<—n t—1
T, = szzl Rz‘,j 45






EM for general GMMs: Example

After 1st iteration




EM for general GMMs: Example

After 2M jteration




EM for general GMMs: Example

After 31 iteration




EM for general GMMs: Example

After 4t jteration




EM for general GMMs: Example

After 5t jteration




EM for general GMMs: Example

After 6th jteration




EM for general GMMs: Example

After 20t iteration

S
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GMM for Density Estimation




General EM algorithm

What is EM in the general case, and why does it work?

55



General EM algorithm

Notation
Observed data: D = {x1,...,Zn}
Unknown variables: Y
For example in clustering: v = (y1,...,Yn)
Paramaters: §
For example in MOG: 0 = [ft1, .« oy s TLy e oo s TRy 21y v v 5 2 K|

Goal: 0 = arg max log P(D|6)

56



General EM algorithm

Other Examples Hidden Markov Models
L2 L3 L4

b0

Observed data: D = {x1,...

Unknown variables: ¥ = (v1, - .- 7y’n)
Paramaters: ¢ 0= [r1,..., 7K, A, B]

Initial probabilities: P(z1 =4i) =m;, 1 = 1,..., K
Transition probabilities: P(y;41 = jlyr = 1) = A
Emission probabilities: P(x: = l|lyy = i) = B

Goal:

0, = arg max log P(D|#) = arg max log P(xq,..

w,A,B

., Tn|d)

57



General EM algorithm

Goal: arg max log P(D|0)

0g P(D|0") = [ dyq(y)iogP(DI6")

_ P(y, D) q(y)] BN ¢ "
= /dyq(y)log [P(yD,Qt)q(y)] since P(y, D|0") = P(D|6")P(y|D,6")

= /dy q(y)logP(y,Dlé’t)—/ dy q(y) log q(y)—l—f dy q(y) log 1)

P(y|D, 6%)
_ g -
_ H(q) e
~ KL(q(y)||P(y|D,6"))

Free energy: Fui(q(-), D)
E Step: Q!¢'~1) = Eyllog P(y, D|6%)|D, 6" 1]

= [ dy P(y|D,0'~1) 1og P(y, D|6")
M Step. 0! = arg max Q6" 1)

We are going to discuss why this approach works >8



General EM algorithm

log P(D|6") = fdy q(y)logP(y,DIGt)—/ dy q(y) 109 q(y)+/dyq(y) log ay)

P(y|D, 6')
N ~ 7L /
. ONS e
—— KL(g(y)||P(y|D,6"))

Free energy: Fy:(a(-), D)

E Step: 000" = /dy P(y|D, 6" log P(y, D|0) Let us see why!
Let q(y) = P(y|D,6")
= KL(q(y)|P(y|D,6")) =0
= log P(D|6") = Fyu(P(y|D,6"), D)

= [ dy P(yID,6"10gP(y, DI9") - [ dy P(y|D,6") log P(y|D, 6"
MStep: </ dyP(y|D,et)mgP(y,D|9/ﬁ+1)— [ dy P(y|D, 6" 10g P(y| D, 6")

1 _ . .
o't = arg max Q(6]6") We maximize only here in 0!!! 59



General EM algorithm

log P(D|6?) = /dy q(y)logP(y,D|9t)—/ dy q(y) log Q(y)+/ dy q(y) 109 P(;Z&J))@t)
N ~ 7L /
_ H@) e
—~ KL(q()|| P(y|D,0"))

Free energy: Fy:(a(-), D)

Theorem: During the EM algorithm the marginal likelihood is not decreasing!
P(D|e") < P(D|eT1)
Proof:
log P(D|0") = Fyu(P(y|D, 6"), D)

< ]dy P(y| D, 6YlogP(y, D|6'T1) —/dy P(y|D, 6") log P(y|D, 6"
— 9t+1(P(y|D39t)aD)

= log P(D|0'1T1) — KL(P(y|D, 0" || P(y|D, 6! T1))

< log P(D|e!T1) -



General EM algorithm

Goal: arg max log P(D|0)

E Step: !|o'1) = E,[log P(y, D|6Y)|D, 0" 1]
— /dyP(y|D>9t_l)|Og P(y, D|6")

M Step: 0" = argmaxQ(0]6' ")

During the EM algorithm the marginal likelihood is not decreasing!

P(D|6Y) < P(D|otF1)

61



Convergence of EM

¢(0/€)

Likelihood function

P(D:0)

——

Sequence of EM lower bound F-functions

EM monotonically converges to a local maximum of likelihood !

62



Convergence of EM

Typical likelihood function

Different sequence of EM lower bound F-functions depending on initialization

Use multiple, randomized initializations in practice

63



Variational Methods



Variational methods

log P(D|6") = /dy Q(y)logP(y,Dlé’t)—/ dy q(y) log Q(y)+/dyQ(y) log p(;lg)@t)
N ~ 7L /
o H(q) D he
—~ KL(g(y)||P(y|D,6%)

Free energy: Fy:(a(-), D)

log P(D|0%) > Fyi(q(-), D)

If P(y|D,6")) is complicated, then instead of setting
q(y) = P(y|D,6")),

try to find suboptimal maximum points of the free energy.

Variational methods might decrease the marginal likelihood!

65



Variational methods

log P(D|#%) = /dy q(y)logP(y,Dwt)—f dy q(y) 1og Q(y)+/ dy q(y) log P(:Z'(l:-g))gt)
N ~ 7L /
_ H@) e
—~— KL(g(y)|P(y|D,6"%))

Free energy: Fy:(a(-), D)
log P(D6") = Fypu(q(-), D) + KL(q(y)||P(y|D,6")) log P(D[6") > Fy(q(-), D)
Partial E Step:
6 is fixed

() = argmax Fy(g(), D) = arg min K L(a(w) || P(y]D,0))

But not necessarily the best max/min which would be P(y|D,6"))
Partial M Step:

gt is fixed
pitl = arg max Fy(q* (), D)

Variational methods might decrease the marginal likelihood! &6



Summary: EM Algorithm

A way of maximizing likelihood function for hidden variable models.

Finds MLE of parameters when the original (hard) problem can be broken up
into two (easy) pieces:

1.Estimate some “missing” or “unobserved” data from observed data and
current parameters.

2. Using this “complete” data, find the MLE parameter estimates.

Alternate between filling in the latent variables using the best guess (posterior)
and updating the parameters based on this guess:

E Step: ¢ =argmax Fu(q(-), D)
M Step: 0" =argmaxFp(¢'(), D)
In the M-step we optimize a lower bound F on the likelihood L.

In the E-step we close the gap, making bound F =likelihood L.

EM performs coordinate ascent on F, can get stuck in local optima. 67



