Nonparametric Methods Recap...

Aarti Singh

Machine Learning 10-701/15-781
Oct 4, 2010

ACHI

Nonparametric Methods

e Kernel Density estimate (also Histogram)

) Xj—=x
1 Zj:lK(A)

(1) = Weighted frequenc
plz) = % - g quency
e Classification - K-NN Classifier
kaN(g;) = arg mg;dX Ky Majority vote
* Kernel Regression Weighted average
X;—x
~ n K i
fn(z) =) wY; where w; = (=)
1=1

X;i—x
"k (5)

Kernel Regression as Weighted Least
Squares

K (255)

min 3w (D -V () =
1=1

i—=1 K (X?IX?;)

Weighted Least Squares

Kernel regression corresponds to locally constant estimator
obtained from (locally) weighted least squares

i.e.set f(X)=[(aconstant)

Kernel Regression as Weighted Least
Squares

set f(X)=p (aconstant)

o , K (X5%)
min 2 wi(8 —Y}) wi(X) = ———7 o
=1 l ile(h @>
constant
n n
97 (5) =2 w;(B—-Y;)) =0 Notice that Z w; = 1

= (X)) =8= > wY;
i—=1

Local Linear/Polynomial Regression

I (X?LX%-

min 3w (D -V () =
1=1

i—=1 K (X?IX?;)

Weighted Least Squares

Local Polynomial regression corresponds to locally polynomial
estimator obtained from (locally) weighted least squares

Le.set f(X) = fotB1(Xi—X)+2(X;-X)>+ - +5P(X _x)P

(local polynomial of degree p around X)

More in 10-702 (statistical machine learning)

Summary

* Parametric vs Nonparametric approaches

» Nonparametric models place very mild assumptions on
the data distribution and provide good models for
complex data

Parametric models rely on very strong (simplistic)
distributional assumptions

» Nonparametric models (not histograms) requires
storing and computing with the entire data set.

Parametric models, once fitted, are much more efficient
in terms of storage and computation.

Summary

* Instance based/non-parametric approaches

Four things make a memory based learner:

1. Adistance metric, dist(x,X))
Euclidean (and many more)

2. How many nearby neighbors/radius to look at?
k, A/h

3. A weighting function (optional)
W based on kernel K

4. How to fit with the local points?
Average, Majority vote, Weighted average, Poly fit

What you should know...

* Histograms, Kernel density estimation
— Effect of bin width/ kernel bandwidth
— Bias-variance tradeoff

e K-NN classifier

— Nonlinear decision boundaries

e Kernel (local) regression
— Interpretation as weighted least squares
— Local constant/linear/polynomial regression

Practical Issues in Machine Learning
Overfitting and Model selection

Aarti Singh

Machine Learning 10-701/15-781
Oct 4, 2010

ACHI

True vs. Empirical Risk

True Risk: Target performance measure

Classification — Probability of misclassification P(f(X) #Y)
Regression — Mean Squared Error E[(f(X) — Y)?]

performance on a random test point (X,Y)

Empirical Risk: Performance on training data

1 n
Classification — Proportion of misclassified examples — » Lrx)2y;
=1

n

Regression — Average Squared Error 1
> (F(X) —vi)?
=1

n;

Overfitting

Is the following predictor a good one? [*(x) f(z)
f(z) = Y;, r=X;fori=1,...,n %
/| any value, otherwise

What is its empirical risk? (performance on training data)
zero |

What about true risk?
> Zero

Will predict very poorly on new random test point:
Large generalization error |

Overfitting

If we allow very complicated predictors, we could overfit the
training data.

Examples: Classification (O-NN classifier)

Football player ? A A

@ No
@ Yes

Weight
Weight

v

v

Overfitting

If we allow very complicated predictors, we could overfit the
training data.

Examples: Regression (Polynomial of order k — degree up to k-1)

15 T T T T T T T T T 1.4

- //\ -
7R 1

0.5

0.4

0.2
*

0 r c c r c c c c c r c c r c c c c c
0 01 02 03 04 05 06 07 0.8 0.9 1 0 01 02 03 04 05 06 07 0.8 0.9 1

1.4

k=3 121

k=7 7

1+

10+~
o8 151
06 20
0.4} 57
30
0.2
35~
or 40+
0.2 -45

r c c r c c c c c r c c r c c c c c
0 01 02 03 04 05 06 07 0.8 0.9 1 0 01 02 03 04 05 06 07 0.8 0.9 1

Effect of Model Complexity

If we allow very complicated predictors, we could overfit the
training data.

Prediction - —
Error fixed # training data
true risk
enuﬂﬂcalﬂsk*’fﬁ
-\-\-\-_\-__“—_
| —— -
-t | - .
underfitting overfitting Complexity

Best

Model @

Empirical risk is no longer a
good indicator of true risk

Behavior of True Risk

Want f, to be as good as optimal predictor f*

Excess Risk E [R[_ﬁx}] Rt = (E[R[ﬁi}] — }ngR[f}) + (inf R(f) — R*)

feF
estimation error approximation error
finite sam.ple size Due to rtar.\domness Due to restriction
+ noise of training data of model class
R(fn) J

Estimation

error

Excess risk

inf R(/)

Approx. error R*

Behavior of True Risk

E|R(f.)| - R = (E[Ri};}]— JilElfg;R(f})ﬂL (Jig};ﬂ(f}—ﬂ*)

estimation error approximation error

estimation
error

approximation
error

>

Complexity of F~

Bias — Variance Tradeoff

fH(X)
. 2y Y vw-/\/\é
Y = f(X) +e e ~ N(0,0%) = .

Regression:
N -
R* = Exy[(f/(X) — Y)?] = E[e’] = 0? Notice: Optimal predictor
does not have zero error
Ep,[R(fn)] = Ex.v.p,[(fn(X) — Y)?4] D, - training data of size n

— Exy 0, [(Fa(X)—Ep, [FaCOD] + Ex v [(En, Fn(X)]— £ (X))?2] + 02
| Y | | Y | _Y_}

variance bias”2 Noise var

Excess Risk = Ep [R(fn)] — R* = variance + bias*2

Random component = est err = approx err

Bias — Variance Tradeoff: Derivation

N/\/\éf*(X)
Y=f(X)+e e~N(0,02) * =N

Regression:
. -
R* = Exy[(f/(X) — Y)?] = E[e’] = 0? Notice: Optimal predictor
does not have zero error
Ep,[R(fn)] = Ex.v.p,[(fn(X) — Y)?4] D, - training data of size n

= Ex,v,p, |(fa(X) = Ep,[fn(X)] + Ep, [fu(X)] - Y)?]

= Ex,v, 0, | (fn(X) = Ep,[fn(X)D? + (Ep,[fa(X)] — V)2
+2(Fn(X) = Ep, [fn (D (Ep, [fn(X)] = V)]

= Ex,v,0, |(fn(X) = En, [Fa(X)D?|+Ex,v. 0, [(Ep, [fn(X)] = V)?]

+Ex,v |2y [foCH=ED, [fn (X)) Ep, [fn ()] - V)]
0

Bias — Variance Tradeoff: Derivation

F7(X)
Y =f(X)+e e~N(0,02) =

Regression:
e -
R* = Exy[(f/(X) — Y)?] = E[e’] = 0? Notice: Optimal predictor
does not have zero error
Ep, [R(fn)] = Ex v, p,[(Ffa(X) = Y)?] D,, - training data of size n

= Ex,v,0, |(fn(X) = Ep, [Fn(X)D?|+Ex,v. 0, [(Ep, [fn(X)] = V)?]

variance - how much does the predictor vary about its mean
for different training datasets

Now, lets look at the second term:

Ex,v,p, |(Ea[fn(X)] = Y)?| = Ex,y [(Ep,[fn(X)] - V)?]

Note: this term doesn’t depend on D,

Bias — Variance Tradeoff: Derivation

Ex,y [(Ep,[fn(X)] = Y)?| = Ex v [(Ep,[fn(X)] - £(X) —)?]
=Ex,vy [(EDn[fn(X)] — fHX))%+ €

—26(Ep, [fn(X)] = £*(X))|

= Ex v [(Eo, [fa(O] — £*(X))%] +Ex v [

~2Exy [(Bp, [EBS =77 (X))

0 since noise is independent
and zero mean

= Ex,v [Epa[fa(O)] = £*(X))?] + Ex,v [¢°]
\ y J _Y_l
bias™2 - how much does the noise variance

mean of the predictor differ from the
optimal predictor

Bias — Variance Tradeoff

3 Independent training datasets

Large bias, Small variance — poor approximation but robust/stable

16

1.4

1.2

1

0.8

0.6

0.4

0.2

Small bias, Large variance — good

2

15

1

0.5

0

-0.5

-1

-1.5

16

1.4

1.2

1

0.8

0.6

0.4

0.2

16

1.4

1.2

1

08 :

0.6

0.4

0.2

2

15

1

0517

0
05
1k
15F 15 1
: : : : : : : : : 2 : : : : : : : : : 2 : : : : : : : : :
01 02 03 04 05 06 07 08 09 0 01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09 1

Examples of Model Spaces

Model Spaces with increasing complexity:

Nearest-Neighbor classifiers with varying neighborhood sizes k=1,2,3,...
Small neighborhood => Higher complexity

Decision Trees with depth k or with k leaves
Higher depth/ More # leaves => Higher complexity

Regression with polynomials of order k=0, 1, 2, ...
Higher degree => Higher complexity

Kernel Regression with bandwidth h
Small bandwidth => Higher complexity

How can we select the right complexity model ?

Model Selection

Setup:
Model Classes {Fy}rea oOf increasing complexity 71 < Fo < ...

n min J(FA
min min (f; M)

We can select the right complexity model in a data-driven/adaptive way:
O Cross-validation
O Structural Risk Minimization
1 Complexity Regularization

O Information Criteria - AIC, BIC, Minimum Description Length (MDL)

Hold-out method

We would like to pick the model that has smallest generalization error.

Can judge generalization error by using an independent sample of data.

Hold - out procedure:

n data points available D = {X,. Y;},

1) Split into two sets: Training dataset Validation dataset NOT test
Dr = {X;.Y;}7™", Dy = {X,. Y},) Data !l

2) Use D for training a predictor from each model class:

f\ = arg min R
I3\ gfef 7(f)

A
|—> Evaluated on training dataset D,

Hold-out method

3) Use Dv to select the model class which has smallest empirical error on D,

A = arg min Ry (f>
g min v (fa)

> Evaluated on validation dataset D,

4) Hold-out predictor

Intuition: Small error on one set of data will not imply small error on
a randomly sub-sampled second set of data

Ensures method is “stable”

Hold-out method

Drawbacks:

= May not have enough data to afford setting one subset aside for

getting a sense of generalization abilities
= Validation error may be misleading (bad estimate of generalization

error) if we get an “unfortunate” split

Limitations of hold-out can be overcome by a family of random sub-
sampling methods at the expense of more computation.

Cross-validation

K-fold cross-validation

Create K-fold partition of the dataset.

Form K hold-out predictors, each time using one partition as validation and
rest K-1 as training datasets.

Final predictor is average/majority vote over the K hold-out estimates.

I:I training I:Ivalidation

Run 1 = f1

Total number of examples

Run 2 = fo

Run K - JK

Cross-validation

L eave-one-out (LOQ) cross-validation

Special case of K-fold with K=n partitions
Equivalently, train on n-1 samples and validate on only one sample per run
for nruns

I:I training I:Ivalidation
Total number of examples

¢ >

Run 1 = f1

Run 2 = fo

Run K = K

Cross-validation

Random subsampling

Randomly subsample a fixed fraction an (0< a <1) of the dataset for validation.
Form hold-out predictor with remaining data as training data.

Repeat K times

Final predictor is average/majority vote over the K hold-out estimates.

I:I training I:Ivalidation
Total number of examples

< P

Run 1 = f1

Run 2 = fz

Run K = fK

Estimating generalization error

Generalization error Ep[R(F,)]
Hold-out = 1-fold: Error estimate = Ry (fr)

K
K-fold/LOO/random Error estimate = Z Rvk(ka
sub-sampling: k=1

We want to estimate the error of a predictor l] training l] validation
based on n data points. Total number of examples
If K is large (close to n), bias of error estimate b >
is small since each training set has close to n Run 1
data points.

Run 2

However, variance of error estimate is high since
each validation set has fewer data points and

Evk might deviate a lot from the mean.
Run K

Practical Issues in Cross-validation

How to decide the values for Kand a?

= largeK
+ The bias of the error estimate will be small
- The variance of the error estimate will be large (few validation pts)
- The computational time will be very large as well (many experiments)

= Small K
+ The # experiments and, therefore, computation time are reduced
+ The variance of the error estimate will be small (many validation pts)
- The bias of the error estimate will be large

Common choice: K=10,a=0.1 ©

Structural Risk Minimization

Penalize models using bound on deviation of true and empirical risks.

fn = arg min {ﬁn(f) + C-"(f)}
c;
Bound on deviation from true

risk
With high probability, |R(f) — Ra(f)| < C(f) VfeF Concentration bounds
(later)
F'reEdictic:n h <——High probability
rror Upper bound
on true risk
true risk

empirical risk < C(f) - large for complex models

b -
overfitting Complexity

Structural Risk Minimization

Deviation bounds are typically pretty loose, for small sample sizes. In practice,

—~

f = argmin {Ba () HMP (D]

Choose by cross-validation!

Problem: Identify flood plain from noisy satellite images

Noiseless image Noisy image True Flood plain
(elevation level > x)

Structural Risk Minimization

Deviation bounds are typically pretty loose, for small sample sizes. In practice,

fn = argmin { En(/) (N}

Choose by cross-validation!

Problem: Identify flood plain from noisy satellite images

True Flood plain Zero penalty CV penalty Theoretical penalty
(elevation level > x)

Occam’s Razor

William of Ockham (1285-1349) Principle of
Parsimony:

“One should not increase, beyond what is

necessary, the number of entities required to
explain anything.”

Alternatively, seek the simplest explanation.

Penalize complex models based on

* Prior information (bias)
* Information Criterion (MDL, AIC, BIC)

Importance of Domain knowledge

f(z)

Distribution of photon arrivals
P Compton Gamma-Ray Observatory Burst

and Transient Source Experiment (BATSE)

Complexity Regularization

Penalize complex models using prior knowledge.

fo = arg1111;1{ﬁ&f)+€()}

- feF
Cost of model
(log prior)
Bayesian viewpoint:

prior probability of f, p(f) = e~ C(f)

cost is small if fis highly probable, cost is large if f is improbable

ERM (empirical risk minimization) over a restricted class F
= uniform prior on f € F, zero probability for other predictors

o oA
fn argfrggpL n(f)

Complexity Regularization

Penalize complex models using prior knowledge.

}; — argiin {ﬁﬂ(f) + C-"(f)}

feF

Cost of model
(log prior)

Examples: MAP estimators
Regularized Linear Regression - Ridge Regression, Lasso

Omap = arg maxlog p(D|0) +-10g p(6)

T
Buap = arg rnﬁin S (Vi — X;8)? +®|I6II
=1

Penalize models based

on some norm of
How to choose tuning parameter A? Cross-validation regression coefficients

Information Criteria — AIC, BIC

Penalize complex models based on their information content.

ﬁl — argmin {ﬁn(f) + C-"(f)}

feF

bits needed to describe f
(description length)

AIC (Akiake IC) C(f) = # parameters

Allows # parameters to be infinite as # training data n become large

BIC (Bayesian IC) C(f) = # parameters * log n

Penalizes complex models more heavily — limits complexity of models
as # training data n become large

Information Criteria - MDL

Penalize complex models based on their information content.

fo = arg min {ﬁn(f) + C-"(f)}

bits needed to describe f
MDL (Minimum Description Length) (description length)

Example: Binary Decision trees Ff; — {tree classifiers with k leafs}

FI =1 E>1 FE prefix encode each element f of F7
C(f) = 3k — 1 bits

k leaves => 2k — 1 nodes

2k — 1 bits to encode tree structure

+ k bits to encode label of each leaf (0/1) .
5 leaves => 9 bits to encode structure

Summary

True and Empirical Risk
Over-fitting
Approx err vs Estimation err, Bias vs Variance tradeoff

Model Selection, Estimating Generalization Error

= Hold-out, K-fold cross-validation
= Structural Risk Minimization
= Complexity Regularization

= |nformation Criteria — AIC, BIC, MDL

