Linear Regression

Aarti Singh

Machine Learning 10-701/15-781 Sept 27, 2010

Discrete to Continuous Labels

Classification

Sports

Science
News

Anemic cell Healthy cell

X = Document

Y = Topic

X = Cell Image

Y = Diagnosis

Regression

Stock Market Prediction

Regression Tasks

11 am

12 pm

1 pm

2 pm

Weather Prediction

3 pm

4 pm

5 pm

6 pm

Estimating Contamination

Supervised Learning

Goal: Construct a **predictor** $f: X \to Y$ to minimize a risk (performance measure) R(f)

Classification:

$$R(f) = P(f(X) \neq Y)$$

Probability of Error

Regression:

$$R(f) = \mathbb{E}[(f(X) - Y)^2]$$

Mean Squared Error

Regression

Optimal predictor:

$$f^* = \arg\min_f \mathbb{E}[(f(X) - Y)^2]$$

$$= \mathbb{E}[Y|X] \qquad \text{(Conditional Mean)}$$

Intuition: Signal plus (zero-mean) Noise model

$$Y = f^*(X) + \epsilon$$

Regression

Optimal predictor:
$$f^* = \arg\min_f \mathbb{E}[(f(X) - Y)^2] = \mathbb{E}[Y|X]$$

Proof Strategy: $R(f) \geq R(f^*)$ for any prediction rule f

$$R(f) = \mathbb{E}_{XY}[(f(X) - Y)^2] = \mathbb{E}_X[\mathbb{E}_{Y|X}[(f(X) - Y)^2|X]]$$

$$\begin{array}{ll} & \quad \text{Dropping subscripts} \\ & \quad \text{for notational convenience} \\ & \quad = & \quad E\left[E\left[(f(X)-E[Y|X]+E[Y|X]-Y)^2|X\right]\right] \\ & \quad = & \quad E[\left[(f(X)-E[Y|X])^2|X\right] \\ & \quad + 2E\left[(f(X)-E[Y|X])(E[Y|X]-Y)|X\right] \\ & \quad + E[(E[Y|X]-Y)^2|X] \\ & \quad = & \quad E[\left[(f(X)-E[Y|X])^2|X\right] \\ & \quad = & \quad + 2(f(X)-E[Y|X])\times 0 \\ & \quad + E[(E[Y|X]-Y)^2|X] \\ & \quad = & \quad E\left[(f(X)-E[Y|X])^2\right] + R(f^*). \end{array}$$

6

Regression

Optimal predictor:

$$f^* = \arg\min_f \mathbb{E}[(f(X) - Y)^2]$$

= $\mathbb{E}[Y|X]$ (Conditional Mean)

Intuition: Signal plus (zero-mean) Noise model

$$Y = f^*(X) + \epsilon$$

Depends on **unknown** distribution P_{XY}

Regression algorithms

Linear Regression

Lasso, Ridge regression (Regularized Linear Regression)

Nonlinear Regression

Kernel Regression

Regression Trees, Splines, Wavelet estimators, ...

Empirical Risk Minimization (ERM)

$$f^* = \arg\min_{f} \mathbb{E}[(f(X) - Y)^2]$$

Empirical Risk Minimizer:
$$\widehat{f}_n = \arg\min_{f \in \mathcal{F}} \left(\frac{1}{n} \sum_{i=1}^n (f(X_i) - Y_i)^2 \right)$$

Class of predictors

Empirical mean

$$\frac{1}{n} \sum_{i=1}^{n} \left[\mathsf{loss}(Y_i, f(X_i)) \right] \xrightarrow{\mathsf{Law of Large}} \mathbb{E}_{XY} \left[\mathsf{loss}(Y, f(X)) \right]$$

More later...

ERM – you saw it before!

Learning Distributions

Max likelihood = Min -ve log likelihood empirical risk

$$\max_{\theta} P(D|\theta) = \min_{\theta} \frac{1}{n} \sum_{i=1}^{n} -\log P(X_i|\theta) \\ \log X(X_i,\theta)$$
 Negative log Likelihood loss

What is the class \mathcal{F} ?

Class of parametric distributions

Bernoulli (θ)

Gaussian (μ , σ^2)

Linear Regression

$$\widehat{f}_n^L = \arg\min_{f \in \mathcal{F}_L} \frac{1}{n} \sum_{i=1}^n (f(X_i) - Y_i)^2 \quad \text{Least Squares Estimator}$$

 \mathcal{F}_L - Class of Linear functions

Uni-variate case:

$$f(X) = \beta_1 + \beta_2 X$$
 β_1 - intercept

Multi-variate case:

$$f(X) = f(X^{(1)}, \dots, X^{(p)}) = \beta_1 X^{(1)} + \beta_2 X^{(2)} + \dots + \beta_p X^{(p)}$$

$$= X\beta$$
 where $X = [X^{(1)} \dots X^{(p)}], \beta = [\beta_1 \dots \beta_p]^T$

Least Squares Estimator

$$\widehat{f}_n^L = \arg\min_{f \in \mathcal{F}_L} \frac{1}{n} \sum_{i=1}^n (f(X_i) - Y_i)^2$$

$$\widehat{\beta} = \arg\min_{\beta} \frac{1}{n} \sum_{i=1}^{n} (X_i \beta - Y_i)^2$$

$$\widehat{f}_n^L(X) = X\widehat{\beta}$$

$$= \arg\min_{\beta} \frac{1}{n} (\mathbf{A}\beta - \mathbf{Y})^T (\mathbf{A}\beta - \mathbf{Y})$$

$$\mathbf{A} = \begin{bmatrix} X_1 \\ \vdots \\ X_n \end{bmatrix} = \begin{bmatrix} X_1^{(1)} & \dots & X_1^{(p)} \\ \vdots & \ddots & \vdots \\ X_n^{(1)} & \dots & X_n^{(p)} \end{bmatrix} \quad \mathbf{Y} = \begin{bmatrix} \mathbf{Y}_1 \\ \vdots \\ \mathbf{Y}_n \end{bmatrix}$$

Least Squares Estimator

$$\widehat{\beta} = \arg\min_{\beta} \frac{1}{n} (\mathbf{A}\beta - \mathbf{Y})^T (\mathbf{A}\beta - \mathbf{Y}) = \arg\min_{\beta} J(\beta)$$

$$J(\beta) = (\mathbf{A}\beta - \mathbf{Y})^T (\mathbf{A}\beta - \mathbf{Y})$$

$$\left. \frac{\partial J(\beta)}{\partial \beta} \right|_{\widehat{\beta}} = 0$$

Normal Equations

$$(\mathbf{A}^T \mathbf{A})\widehat{\beta} = \mathbf{A}^T \mathbf{Y}$$

$$\mathbf{p} \times \mathbf{p} \quad \mathbf{p} \times \mathbf{1} \quad \mathbf{p} \times \mathbf{1}$$

If $(\mathbf{A}^T \mathbf{A})$ is invertible,

$$\widehat{\beta} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{Y}$$
 $\widehat{f}_n^L(X) = X \widehat{\beta}$

When is $(\mathbf{A}^T\mathbf{A})$ invertible ? Recall: Full rank matrices are invertible. What is rank of $(\mathbf{A}^T\mathbf{A})$?

What if $(\mathbf{A}^T \mathbf{A})$ is not invertible ? Regularization (later)

Geometric Interpretation

$$\widehat{f}_n^L(X) = X\widehat{\beta} = X(\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T\mathbf{Y}$$

Difference in prediction on training set:

$$\hat{f}_n^L(\mathbf{A}) - \mathbf{Y} =$$

$$\mathbf{A}^T(\widehat{f}_n^L(\mathbf{A}) - \mathbf{Y}) = \mathbf{0}$$

 $\widehat{f}_n^L(\mathbf{A})$ is the orthogonal projection of \mathbf{Y} onto the linear subspace spanned by the columns of \mathbf{A}

Revisiting Gradient Descent

Even when $(\mathbf{A}^T\mathbf{A})$ is invertible, might be computationally expensive if \mathbf{A} is huge.

$$\widehat{\beta} = \arg\min_{\beta} \frac{1}{n} (\mathbf{A}\beta - \mathbf{Y})^T (\mathbf{A}\beta - \mathbf{Y}) = \arg\min_{\beta} J(\beta)$$

Gradient Descent since $J(\beta)$ is convex

Initialize: β^0

Update:
$$\beta^{t+1} = \beta^t - \frac{\alpha}{2} \frac{\partial J(\beta)}{\partial \beta} \Big|_{t}$$

$$= \beta^t - \alpha \mathbf{A}^T (\mathbf{A} \beta^t - Y)$$

$$0 \text{ if } \beta^t = \widehat{\beta}$$

Stop: when some criterion met e.g. fixed # iterations, or $\frac{\partial J(\beta)}{\partial \beta}\Big|_{\beta^t} < \varepsilon$.

Effect of step-size α

Large α => Fast convergence but larger residual error Also possible oscillations

Small α => Slow convergence but small residual error

Least Squares and MLE

Intuition: Signal plus (zero-mean) Noise model

$$Y = f^*(X) + \epsilon = X\beta^* + \epsilon \qquad \epsilon \sim \mathcal{N}(0, \sigma^2 \mathbf{I})$$

$$Y \sim \mathcal{N}(X\beta^*, \sigma^2 \mathbf{I})$$

$$\widehat{\beta}_{\text{MLE}} = \arg\max_{\beta} \log p(\{(X_i, Y_i)\}_{i=1}^n | \beta, \sigma^2)$$

$$\log \text{ likelihood}$$

$$= \arg\min_{\beta} \sum_{i=1}^{n} (X_i \beta - Y_i)^2 = \widehat{\beta}$$

Least Square Estimate is same as Maximum Likelihood Estimate under a Gaussian model!

Regularized Least Squares and MAP

What if $(\mathbf{A}^T \mathbf{A})$ is not invertible ?

$$\widehat{\beta}_{\text{MAP}} = \arg\max_{\beta} \log p(\{(X_i, Y_i)\}_{i=1}^n | \beta, \sigma^2) + \log p(\beta)$$

$$\log \text{ likelihood} \qquad \log \text{ prior}$$

I) Gaussian Prior

$$eta \sim \mathcal{N}(\mathbf{0}, au^2 \mathbf{I})$$

$$p(\beta) \propto e^{-\beta^T \beta/2\tau^2}$$

issian Prior
$$eta \sim \mathcal{N}(0, au^2\mathbf{I})$$
 $p(eta) \propto e^{-eta^Teta/2 au^2}$

$$\widehat{\beta}_{\text{MAP}} = \arg\min_{\beta} \sum_{i=1}^{n} (Y_i - X_i \beta)^2 + \lambda \|\beta\|_2^2 \qquad \text{Ridge Regression}$$
 Closed form: HW
$$\qquad \qquad \text{constant}(\sigma^2, \tau^2)$$

constant(σ^2 , τ^2)

Regularized Least Squares and MAP

What if $(\mathbf{A}^T \mathbf{A})$ is not invertible ?

$$\widehat{\beta}_{\text{MAP}} = \arg\max_{\beta} \log p(\{(X_i, Y_i)\}_{i=1}^n | \beta, \sigma^2) + \log p(\beta)$$

$$\log \text{ likelihood} \qquad \log \text{ prior}$$

II) Laplace Prior

$$eta_i \stackrel{iid}{\sim} \mathsf{Laplace}(\mathsf{0},t) \qquad p(eta_i) \propto e^{-|eta_i|/t}$$

$$p(\beta_i) \propto e^{-|\beta_i|/t}$$

Prior belief that β is Laplace with zero-mean biases solution to "small" β

Ridge Regression vs Lasso

$$\min_{\beta} (\mathbf{A}\beta - \mathbf{Y})^T (\mathbf{A}\beta - \mathbf{Y}) + \lambda \mathrm{pen}(\beta) = \min_{\beta} J(\beta) + \lambda \mathrm{pen}(\beta)$$

Ridge Regression:

$$pen(\beta) = \|\beta\|_2^2$$

Lasso:

$$pen(\beta) = \|\beta\|_1$$

Ideally IO penalty, but optimization becomes non-convex

Lasso (11 penalty) results in sparse solutions – vector with more zero coordinates Good for high-dimensional problems – don't have to store all coordinates!

Beyond Linear Regression

Polynomial regression

Regression with nonlinear features/basis functions

Kernel regression - Local/Weighted regression

Regression trees – Spatially adaptive regressio

Polynomial Regression

Univariate (1-d)
$$f(X) = \beta_0 + \beta_1 X + \beta_2 X^2 + \dots + \beta_m X^m = \mathbf{X}\beta$$
 case:
$$\text{where } \mathbf{X} = \begin{bmatrix} 1 \ X \ X^2 \dots X^m \end{bmatrix}, \beta = \begin{bmatrix} \beta_1 \dots \beta_m \end{bmatrix}^T$$

$$\widehat{\beta} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{Y}$$

$$\widehat{f}_n(X) = \mathbf{X} \widehat{\beta}$$

$$\mathbf{A} = \begin{bmatrix} 1 & X_1 & X_1^2 & \dots & X_1^m \\ \vdots & & \ddots & \vdots \\ 1 & X_n & X_n^2 & \dots & X_n^m \end{bmatrix}$$

$$f(X) = \sum_{j=0}^{m} \beta_j X^j = \sum_{j=0}^{m} \beta_j \phi_j(X)$$
Weight of each feature features
$$\phi_0(X)$$

$$\phi_1(X)$$

Polynomial Regression

http://mste.illinois.edu/users/exner/java.f/leastsquares/

Nonlinear Regression

$$f(X) = \sum_{j=0}^m \beta_j \phi_j(X)$$
 Basis coefficients
 Nonlinear features/basis functions

Fourier Basis

Good representation for oscillatory functions

Wavelet Basis

Good representation for functions localized at multiple scales

Local Regression

$$f(X) = \sum_{j=0}^m \beta_j \phi_j(X)$$
 Basis coefficients
 Nonlinear features/basis functions

Globally supported basis functions (polynomial, fourier) will not yield a good representation

Local Regression

$$f(X) = \sum_{j=0}^m \beta_j \phi_j(X)$$
 Basis coefficients
 Nonlinear features/basis functions

Globally supported basis functions (polynomial, fourier) will not yield a good representation

What you should know

Linear Regression

Least Squares Estimator

Normal Equations

Gradient Descent

Geometric and Probabilistic Interpretation (connection to MLE)

Regularized Linear Regression (connection to MAP)

Ridge Regression, Lasso

Polynomial Regression, Basis (Fourier, Wavelet) Estimators

Next time

- Kernel Regression (Localized)
- Regression Trees