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Naive Bayes Recap...

Optimal Classifier: f*(z) = argmax P(y|z)
d
NB Assumption:  P(X1..X4lY) = |] P(X;|Y)
i—1
NB Classifier: ]

fnp(x) = arg m??xH P(z;|ly)P(y)
—1

2

Assume parametric form for P(X;| Y) and P(Y)
— Estimate parameters using MLE/MAP and plug in



Generative vs. Discriminative
Classifiers

Generative classifiers (e.g. Naive Bayes)
* Assume some functional form for P(X,Y) (or P(X|Y) and P(Y))

* Estimate parameters of P(X|Y), P(Y) directly from training data
» Use Bayes rule to calculate P(Y|X)

Why not learn P(Y|X) directly? Or better yet, why not learn the
decision boundary directly?

Discriminative classifiers (e.g. Logistic Regression)

* Assume some functional form for P(Y|X) or for the decision boundary
* Estimate parameters of P(Y|X) directly from training data



Logistic Regression

Assumes the following functional form for P(Y|X):

1
1+ exp(wo + >, w; X;)

P(Y =1|X) =

Logistic function applied to a linear
function of the data

Logistic
function 1
(or Sigmoid): 1+ exp(—=)

logit (z)

Features can be discrete or continuous!



Logistic Regression is a Linear
Classifier!

Assumes the following functional form for P(Y|X):

1
1+ exp(wo —+ Zz wiXi)

P(Y = 1|X) =

I 3

Decision boundary:

P(Y =0|X) = P(Y = 1|X)

= AV o

0
- 1
)

(Linear Decision Boundary)




Logistic Regression is a Linear
Classifier!

Assumes the following functional form for P(Y|X):

1

PY =1|X) =
( X) 1 4 exp(wo + >, w; X;)
B - exp(wo + ), wiXy)
= PY =0[X) = 1+ exp(wo + >, w; X;)
:>P(Y 0] ):exp(w —I—ZwX)
P(Y = 1|X) 0 1

= Ao | rAVE




Logistic Regression for more than 2
classes

* Logistic regression in more general case, where
Y 6 {yll"'lyK}

for k<K

d
ex + > X

1+ Z}K:_f exp(w;o + Z@dzl w;; X;)

for k=K (normalization, so no weights for this class)
1

1+ Z§{=_11 exp(wjo + X4 q wii X;)

PY =yg|X) =

Is the decision boundary still linear?



Training Logistic Regression

1
P(Y =0|X,w) =

We’'ll focus on binary classification: 1+ eap(wo + T wiXi)
exp(wo + 32 wiX;)

PY =1|X,w) = 1+ exp(wo + >; w; X;)

How to learn the parameters w,, w,, ... w,?
Training Data  {(xX@W,vy@W)n_, X0 = x . x{)
Maximum Likelihood Estimates

n . .
WyLE = argmax 1] P(x@D v | w)
j=1
But there is a problem ...

Don't have a model for P(X) or P(X|Y) - only for P(Y|X)



Training Logistic Regression

How to learn the parameters w,, w,, ... w,?
Training Data  {(x(),y(W)n_, x0 = (x .. x0)

Maximum (Conditional) Likelihood Estimates

n . .
WyoLE = argmax 1] Py | xU) w)
j=1

Discriminative philosophy — Don’t waste effort learning P(X),
focus on P(Y|X) — that’s all that matters for classification!



Expressing Conditional log Likelihood

1
1 + exp(wg + >-; w; X;)

exp(wg + >; w; X;)
1 + exp(wo + >; w; X;)

P(Y =0|X,w) =

PY =1|X,w) =

I((w) = In HP(yj|Xj,w)
J

| i d
= Y | (wo + D wiz]) — In(1 + exp(wo + Y w;z)))

J
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Maximizing Conditional log Likelihood

max l(w) = InHP(yj|xj,w)
j

| d | d .
— Z’yj(’wo + Zwﬁ?) — In(1 4+ exp(wg + Z’w@'l‘g))
j i :

Good news: /(w) is concave function of w — no locally optimal
solutions

Bad news: no closed-form solution to maximize /(w)

Good news: concave functions easy to optimize (unique
maximum)
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Optimizing concave/convex function

* Conditional likelihood for Logistic Regression is concave
e Maximum of a concave function = minimum of a convex function

Gradient Ascent (concave)/ Gradient Descent (convex)

25 Gradient:
Vwl(w) = [%Luj;), o EZ(T?]’
Update rule: Learning rate, n>0
AW = nVwl(w)
ol(w)

2 ’wz'(t_l_l)  ® 4




Gradient Ascent for Logistic
Regression

Gradient ascent algorithm: iterate until change < ¢

w(gt+1) — w(gt) -+ nZ[yj — P(Yj =1 | Xj,W(t))]
J

Fori=1,...,d,

’wz-(t_l_l) < wzgt)—l—nZacg[yj—P(Yj =1 |x/,wt))]
] l l

|

Predict what current weight
thinks label Y should be

repeat

e Gradient ascent is simplest of optimization approaches
— e.g., Newton method, Conjugate gradient ascent, IRLS (see Bishop 4.3.3)
13



Effect of step-size n
—I(w) —I(w)

Large n => Fast convergence but larger residual error
Also possible oscillations

Smalln => Slow convergence but small residual error
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That’s all M(C)LE. How about MAP?

p(w|Y,X) o P(Y|X,w)p(w)

* One common approach is to define priors on w

— Normal distribution, zero mean, identity covariance
— “Pushes” parameters towards zero

* Corresponds to Regularization
— Helps avoid very large weights and overfitting
— More on this later in the semester

e M(C)AP estimate

mn
* — J | xJ
w* = argmaxIn |p(w) 'H1 P(y? | x7,w)
j:
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Understanding the sigmoid

g(wo + Z’wz'%') =

wWy=-2, w;=-1

1
1 4 eWoTD_; witi
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Large weights — Overfitting

1 1
1+e® 1+ e 27

* Large weights lead to overfitting:

1+ 2o

00
100

—

1
14+ 6—100:13

* Penalizing high weights can prevent overfitting...

— again, more on this later in the semester
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M(C)AP — Regularization

* Regularization o 2
p(w) = e 2x2
RV 2T
n . .
ardg mvgnxln [P(W) H P(y’ | XJ,W)] Zero-mean Gaussian prior
j=1

n o Y

* = J | xJ _ !

w" = arg max lenP(y | x7, w) 21 2

j= =

\ )
|

Penalizes large weights
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M(C)AP — Gradient

 Gradient =
P(W) == 1;[}{\/% e 2k?
0 n [p(w) ﬁ P(yj | ijw)] Zero-mean Gaussian prior
88w7; Inp(w) + 8?1)7; In Ll;[l P(y’ | x7 w)J
) v

Same as before
L X

2

Extra term Penalizes large weights
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M(C)LE vs. M(C)AP

e Maximum conditional likelihood estimate

mn
p— 7| xJ
w* = argmaxIn LH P(y |x,w)]

'~

wi(t_l_l) — *wi(t) +n2xg[yj —P(Y =1| xJ, w(t))]

 Maximum conditional a posteriori estimate

T
* — J | xJ
w" = arg maxln [p(w) ‘Hl Py’ | x ,w)]
j:

wit (t)+?7{ >+zaﬂ[y P<Y=1|xj,w<t>)]}
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Connection to Gaussian Naive Bayes

There are several distributions that can lead to a linear
decision boundary.

As another example, consider a generative model (GNB):

Y ~ Bernoulli(r)

Gaussian class conditional densities

. _ : 2 2
Assume variance is independent of class, i.e. 07 o = 0;
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Connection to Gaussian Naive Bayes

2
1 — (X —rg )
20'.2
K

\/271'02-2 ©

Using conditionally independent assumption,

P(XG|lY =y) =

g POV =0) 13 POV =0

P(X|Y =1) Wby =1
Decision boundary:

P(Y=0X) . PY=0PX[Y=0) 1-x P(X|Y = 0)
8 by —ix) T Py —DP(X|Y = 1) %8 g B Xy =)

¢ 7
\ J | J
I 1

Constant term First-order term -

1—7 (7, — (13 1i0 — i
= log - -I—Z 952 + Z 2 X; =:wo + Z’U)ZX%




Gaussian Naive Bayes vs. Logistic
Regression

Set of Gaussian

Naive Bayes parameters <:> Set .Of Logistic
(feature variance Regression parameters

independent of class label)

Representation equivalence

— But only in a special case!ll (GNB with class-independent
variances)

But what’s the difference???

LR makes no assumptions about P(X]|Y) in learning!!!
Loss function!!!

— Optimize different functions — Obtain different solutions .



Naive Bayes vs. Logistic Regression

Consider Y boolean, X; continuous, X=<X; ... X;>

Number of parameters:

* NB:4d+1  m, (Ui, Hyys s Mgyl (G%, O% s oy O%g) y=0,1
e LR:d+1 Wo, W, ..., Wy

Estimation method:

* NB parameter estimates are uncoupled
* LR parameter estimates are coupled
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Generative vs Discriminative

[Ng & Jordan, NIPS 2001]
Given infinite data (asymptotically),

If conditional independence assumption holds,
Discriminative and generative NB perform similar.

€pis,0o ™ €Gen,00

If conditional independence assumption does NOT holds,
Discriminative outperforms generative NB.

6DiS,OO < 6G'ren,OO
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Generative vs Discriminative

Given finite data (n data points, d features), [Ng & Jordan, NIPS 2001]

€pis,n < €pis,0o T 0, (\/%)

log d
EGen,n g EGen,OC) _I_ O ( OE )

Naive Bayes (generative) requires n = O(log d) to converge to its
asymptotic error, whereas Logistic regression (discriminative)
requires n = O(d).

Why? “Independent class conditional densities”
* parameter estimates not coupled — each parameter is learnt
independently, not jointly, from training data.
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Naive Bayes vs Logistic Regression

Verdict

Both learn a linear decision boundary.

Naive Bayes makes more restrictive assumptions
and has higher asymptotic error,

BUT

converges faster to its less accurate asymptotic
error.
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Experimental Comparison gordaro)
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What you should know

LR is a linear classifier

— decision rule is a hyperplane

LR optimized by conditional likelihood
— no closed-form solution

— concave — global optimum with gradient ascent
— Maximum conditional a posteriori corresponds to regularization

Gaussian Naive Bayes with class-independent variances
representationally equivalent to LR

— Solution differs because of objective (loss) function
In general, NB and LR make different assumptions
— NB: Features independent given class — assumption on P(X|Y)
— LR: Functional form of P(Y|X), no assumption on P(X]Y)
Convergence rates

— GNB (usually) needs less data
— LR (usually) gets to better solutions in the limit



Recitation Tomorrow!

MLE, MAP, Naive Bayes, Logistic Regression
Strongly recommended!!

Place: NSH 1507 (Note)

Time: 5-6 pm

Jayant
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Comparison Chart

e http://www.cs.cmu.edu/~aarti/Class/10701/t

able.html
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