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Naïve Bayes Recap…

• Optimal Classifier:

• NB Assumption:

• NB Classifier:

• Assume parametric form for P(Xi|Y) and P(Y)

– Estimate parameters using MLE/MAP and plug in
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Generative vs. Discriminative 
Classifiers
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Generative classifiers (e.g. Naïve Bayes)

• Assume some functional form for P(X,Y) (or P(X|Y) and P(Y))
• Estimate parameters of P(X|Y), P(Y) directly from training data
• Use Bayes rule to calculate P(Y|X)

Why not learn P(Y|X) directly? Or better yet, why not learn the 
decision boundary directly?

Discriminative classifiers (e.g. Logistic Regression)

• Assume some functional form for P(Y|X) or for the decision boundary
• Estimate parameters of P(Y|X) directly from training data



Logistic Regression
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Assumes the following functional form for P(Y|X):

Logistic
function
(or Sigmoid):

Logistic function applied to a linear
function of the data
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Features can be discrete or continuous!



Logistic Regression is a Linear 
Classifier!
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Assumes the following functional form for P(Y|X):

Decision boundary:

(Linear Decision Boundary)
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Logistic Regression is a Linear 
Classifier!
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Assumes the following functional form for P(Y|X):
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Logistic Regression for more than 2 
classes
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• Logistic regression in more general case, where 
Y 2 {y1,…,yK}

for k<K

for k=K (normalization, so no weights for this class)

Is the decision boundary still linear?



Training Logistic Regression
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We’ll focus on binary classification:

How to learn the parameters w0, w1, … wd?

Training Data

Maximum Likelihood Estimates

But there is a problem … 

Don’t have a model for P(X) or P(X|Y) – only for P(Y|X)



Training Logistic Regression
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How to learn the parameters w0, w1, … wd?

Training Data

Maximum (Conditional) Likelihood Estimates

Discriminative philosophy – Don’t waste effort learning P(X), 
focus on P(Y|X) – that’s all that matters for classification!



Expressing Conditional log Likelihood
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Maximizing Conditional log Likelihood
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Good news: l(w) is concave function of w ! no locally optimal 
solutions

Bad news: no closed-form solution to maximize l(w)

Good news: concave functions easy to optimize (unique 
maximum)



Optimizing concave/convex function
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• Conditional likelihood for Logistic Regression is concave 

• Maximum of a concave function = minimum of a convex function

Gradient Ascent (concave)/ Gradient Descent (convex)

Gradient:

Learning rate, >0Update rule:



Gradient Ascent for Logistic 
Regression
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• Gradient ascent is simplest of optimization approaches
– e.g., Newton method, Conjugate gradient ascent, IRLS (see Bishop 4.3.3)

Gradient ascent algorithm: iterate until change < 

For i=1,…,d, 

repeat   Predict what current weight
thinks label Y should be



Effect of step-size 
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Large  => Fast convergence but larger residual error
Also possible oscillations

Small  => Slow convergence but small residual error



That’s all M(C)LE. How about MAP?
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• One common approach is to define priors on w
– Normal distribution, zero mean, identity covariance

– “Pushes” parameters towards zero

• Corresponds to Regularization
– Helps avoid very large weights and overfitting

– More on this later in the semester

• M(C)AP estimate



Understanding the sigmoid
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Large weights  Overfitting

17

• Large weights lead to overfitting:

• Penalizing high weights can prevent overfitting…

– again, more on this later in the semester
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M(C)AP – Regularization

• Regularization
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Zero-mean Gaussian prior

Penalizes large weights



M(C)AP – Gradient

• Gradient
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Zero-mean Gaussian prior

Same as before

Extra term Penalizes large weights



M(C)LE vs. M(C)AP
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• Maximum conditional likelihood estimate

• Maximum conditional a posteriori estimate



Connection to Gaussian Naïve Bayes
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There are several distributions that can lead to a linear 
decision boundary.

As another example,  consider a generative model (GNB):

Assume variance is independent of class, i.e. 

Gaussian class conditional densities



Connection to Gaussian Naïve Bayes

22Constant term First-order term

Using conditionally independent assumption, 

Decision boundary:



Gaussian Naïve Bayes vs. Logistic 
Regression
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• Representation equivalence

– But only in a special case!!! (GNB with class-independent 
variances)

• But what’s the difference???

• LR makes no assumptions about P(X|Y) in learning!!!

• Loss function!!!

– Optimize different functions ! Obtain different solutions

Set of Gaussian 
Naïve Bayes parameters

(feature variance 
independent of class label)

Set of Logistic 
Regression parameters



Naïve Bayes vs. Logistic Regression
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Consider Y boolean, Xi continuous, X=<X1 ... Xd>

Number of parameters:

• NB: 4d +1 p, (m1,y, m2,y, …,  md,y), (s
2

1,y, s
2

2,y, …, s2
d,y)    y = 0,1

• LR: d+1 w0, w1, …, wd

Estimation method:

• NB parameter estimates are uncoupled

• LR parameter estimates are coupled



Generative vs Discriminative
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Given infinite data (asymptotically),

If conditional independence assumption holds,
Discriminative and generative NB perform similar.

If conditional independence assumption does NOT holds,
Discriminative outperforms generative NB.

[Ng & Jordan, NIPS 2001]



Generative vs Discriminative
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Given finite data (n data points, d features),

Naïve Bayes (generative) requires n = O(log d) to converge to its 
asymptotic error, whereas Logistic regression (discriminative) 
requires n = O(d).

Why? “Independent class conditional densities”
* parameter estimates not coupled – each parameter is learnt 

independently, not jointly, from training data.

[Ng & Jordan, NIPS 2001]



Naïve Bayes vs Logistic Regression
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Verdict

Both learn a linear decision boundary. 

Naïve Bayes makes more restrictive assumptions 
and has higher asymptotic error,

BUT 

converges faster to its less accurate asymptotic 
error.



Experimental Comparison (Ng-Jordan’01)
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UCI Machine Learning Repository 15 datasets, 8 continuous features, 7 discrete features

Logistic RegressionNaïve Bayes

More in 
Paper…



What you should know

29

• LR is a linear classifier
– decision rule is a hyperplane

• LR optimized by conditional likelihood
– no closed-form solution
– concave ! global optimum with gradient ascent
– Maximum conditional a posteriori corresponds to regularization

• Gaussian Naïve Bayes with class-independent variances 
representationally equivalent to LR
– Solution differs because of objective (loss) function

• In general, NB and LR make different assumptions
– NB: Features independent given class ! assumption on P(X|Y)
– LR: Functional form of P(Y|X), no assumption on P(X|Y)

• Convergence rates
– GNB (usually) needs less data
– LR (usually) gets to better solutions in the limit



Recitation Tomorrow!
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• MLE, MAP, Naïve Bayes, Logistic Regression

• Strongly recommended!!

• Place: NSH 1507 (Note)

• Time: 5-6 pm

Jayant



Comparison Chart

• http://www.cs.cmu.edu/~aarti/Class/10701/t
able.html
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http://www.cs.cmu.edu/~aarti/Class/10701/table.html
http://www.cs.cmu.edu/~aarti/Class/10701/table.html

