Logistic Regression

Aarti Singh

Machine Learning 10-701/15-781 Sept 22, 2010

Naïve Bayes Recap...

- Optimal Classifier: $f^*(x) = \arg \max_y P(y|x)$
- NB Assumption: $P(X_1...X_d|Y) = \prod_{i=1}^d P(X_i|Y)$
- NB Classifier:

$$f_{NB}(x) = \arg \max_{y} \prod_{i=1}^{d} P(x_i|y)P(y)$$

- Assume parametric form for $P(X_i | Y)$ and P(Y)
 - Estimate parameters using MLE/MAP and plug in

Generative vs. Discriminative Classifiers

Generative classifiers (e.g. Naïve Bayes)

- Assume some functional form for P(X,Y) (or P(X|Y) and P(Y))
- Estimate parameters of P(X|Y), P(Y) directly from training data
- Use Bayes rule to calculate P(Y|X)

Why not learn P(Y|X) directly? Or better yet, why not learn the decision boundary directly?

Discriminative classifiers (e.g. Logistic Regression)

- Assume some functional form for P(Y|X) or for the decision boundary
- Estimate parameters of P(Y|X) directly from training data

Logistic Regression

Assumes the following functional form for P(Y|X):

$$P(Y = 1|X) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

Logistic function applied to a linear function of the data

Logistic function (or Sigmoid): $\frac{1}{1+exp(-z)}$

Features can be discrete or continuous!

Logistic Regression is a Linear Classifier!

Assumes the following functional form for P(Y|X):

$$P(Y = 1|X) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

Decision boundary:

$$P(Y = 0|X) \overset{0}{\underset{1}{\gtrless}} P(Y = 1|X)$$

$$w_0 + \sum_i w_i X_i \overset{0}{\underset{1}{\gtrless}} 0$$

(Linear Decision Boundary)

Logistic Regression is a Linear Classifier!

Assumes the following functional form for P(Y|X):

$$P(Y = 1|X) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

$$\Rightarrow P(Y = 0|X) = \frac{\exp(w_0 + \sum_i w_i X_i)}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

$$\Rightarrow \frac{P(Y=0|X)}{P(Y=1|X)} = \exp(w_0 + \sum_i w_i X_i) \quad \stackrel{0}{\underset{1}{\gtrless}} \quad \mathbf{1}$$

$$\Rightarrow w_0 + \sum_i w_i X_i \quad \stackrel{0}{\underset{2}{\gtrless}} \quad \mathbf{0}$$

Logistic Regression for more than 2 classes

• Logistic regression in more general case, where $Y \in \{y_1,...,y_K\}$

for
$$k < K$$

$$P(Y = y_k | X) = \frac{\exp(w_{k0} + \sum_{i=1}^{d} w_{ki} X_i)}{1 + \sum_{i=1}^{K-1} \exp(w_{i0} + \sum_{i=1}^{d} w_{ji} X_i)}$$

for k=K (normalization, so no weights for this class)

$$P(Y = y_K | X) = \frac{1}{1 + \sum_{j=1}^{K-1} \exp(w_{j0} + \sum_{i=1}^{d} w_{ji} X_i)}$$

Is the decision boundary still linear?

Training Logistic Regression

We'll focus on binary classification:

$$P(Y = 0|\mathbf{X}, \mathbf{w}) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}$$
$$P(Y = 1|\mathbf{X}, \mathbf{w}) = \frac{exp(w_0 + \sum_i w_i X_i)}{1 + exp(w_0 + \sum_i w_i X_i)}$$

How to learn the parameters w_0 , w_1 , ... w_d ?

$$\{(X^{(j)}, Y^{(j)})\}_{j=1}^n$$

Training Data
$$\{(X^{(j)}, Y^{(j)})\}_{j=1}^n$$
 $X^{(j)} = (X_1^{(j)}, \dots, X_d^{(j)})$

Maximum Likelihood Estimates

$$\widehat{\mathbf{w}}_{MLE} = \arg \max_{\mathbf{w}} \prod_{j=1}^{n} P(X^{(j)}, Y^{(j)} | \mathbf{w})$$

But there is a problem ...

Don't have a model for P(X) or P(X|Y) - only for P(Y|X)

Training Logistic Regression

How to learn the parameters w_0 , w_1 , ... w_d ?

Training Data
$$\{(X^{(j)}, Y^{(j)})\}_{j=1}^n$$
 $X^{(j)} = (X_1^{(j)}, \dots, X_d^{(j)})$

Maximum (Conditional) Likelihood Estimates

$$\widehat{\mathbf{w}}_{MCLE} = \arg \max_{\mathbf{w}} \prod_{j=1}^{n} P(Y^{(j)} | X^{(j)}, \mathbf{w})$$

Discriminative philosophy – Don't waste effort learning P(X), focus on P(Y|X) – that's all that matters for classification!

Expressing Conditional log Likelihood

$$P(Y = 0|\mathbf{X}, \mathbf{w}) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}$$
$$P(Y = 1|\mathbf{X}, \mathbf{w}) = \frac{exp(w_0 + \sum_i w_i X_i)}{1 + exp(w_0 + \sum_i w_i X_i)}$$

$$l(\mathbf{w}) \equiv \ln \prod_{j} P(y^{j} | \mathbf{x}^{j}, \mathbf{w})$$

$$= \sum_{j} \left[y^{j} (w_{0} + \sum_{i}^{d} w_{i} x_{i}^{j}) - \ln(1 + exp(w_{0} + \sum_{i}^{d} w_{i} x_{i}^{j})) \right]$$

Maximizing Conditional log Likelihood

$$\max_{\mathbf{w}} l(\mathbf{w}) \equiv \ln \prod_{j} P(y^{j} | \mathbf{x}^{j}, \mathbf{w})$$

$$= \sum_{j} y^{j} (w_{0} + \sum_{i}^{d} w_{i} x_{i}^{j}) - \ln(1 + exp(w_{0} + \sum_{i}^{d} w_{i} x_{i}^{j}))$$

Good news: $I(\mathbf{w})$ is concave function of $\mathbf{w} \to \text{no locally optimal}$ solutions

Bad news: no closed-form solution to maximize I(w)

Good news: concave functions easy to optimize (unique maximum)

Optimizing concave/convex function

- Conditional likelihood for Logistic Regression is concave
- Maximum of a concave function = minimum of a convex function

Gradient Ascent (concave)/ Gradient Descent (convex)

Gradient:

$$\nabla_{\mathbf{w}} l(\mathbf{w}) = \left[\frac{\partial l(\mathbf{w})}{\partial w_0}, \dots, \frac{\partial l(\mathbf{w})}{\partial w_n}\right]'$$

Update rule:

, Learning rate, η>0

$$\Delta \mathbf{w} = \eta \nabla_{\mathbf{w}} l(\mathbf{w})$$

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \frac{\partial l(\mathbf{w})}{\partial w_i} \bigg|_{t}$$

Gradient Ascent for Logistic Regression

Gradient ascent algorithm: iterate until change $< \varepsilon$

$$w_0^{(t+1)} \leftarrow w_0^{(t)} + \eta \sum_j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w}^{(t)})]$$

For i=1,...,d,

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w}^{(t)})]$$

repeat

Predict what current weight thinks label Y should be

- Gradient ascent is simplest of optimization approaches
 - e.g., Newton method, Conjugate gradient ascent, IRLS (see Bishop 4.3.3)

Effect of step-size η

Large η => Fast convergence but larger residual error
Also possible oscillations

Small η => Slow convergence but small residual error

That's all M(C)LE. How about MAP?

$$p(\mathbf{w} \mid Y, \mathbf{X}) \propto P(Y \mid \mathbf{X}, \mathbf{w}) p(\mathbf{w})$$

- One common approach is to define priors on w
 - Normal distribution, zero mean, identity covariance
 - "Pushes" parameters towards zero
- Corresponds to *Regularization*
 - Helps avoid very large weights and overfitting
 - More on this later in the semester
- M(C)AP estimate

$$\mathbf{w}^* = \arg \max_{\mathbf{w}} \ln \left[p(\mathbf{w}) \prod_{j=1}^n P(y^j \mid \mathbf{x}^j, \mathbf{w}) \right]$$

Understanding the sigmoid

$$g(w_0 + \sum_i w_i x_i) = \frac{1}{1 + e^{w_0 + \sum_i w_i x_i}}$$

Large weights → **Overfitting**

$$\frac{1}{1+e^{-x}}$$

$$\frac{1}{1+e^{-2x}}$$

$$\frac{1}{1 + e^{-100x}}$$

Large weights lead to overfitting:

- Penalizing high weights can prevent overfitting...
 - again, more on this later in the semester

M(C)AP – Regularization

Regularization

$$\arg\max_{\mathbf{w}}\ln\left[p(\mathbf{w})\prod_{j=1}^{n}P(y^{j}\mid\mathbf{x}^{j},\mathbf{w})\right]$$
 Zero-mean Gaussian prior

$$p(\mathbf{w}) = \prod_{i} \frac{1}{\kappa \sqrt{2\pi}} e^{\frac{-w_i^2}{2\kappa^2}}$$

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} \sum_{j=1}^n \ln P(y^j \mid \mathbf{x}^j, \mathbf{w}) - \sum_{i=1}^d \frac{w_i^2}{2\kappa^2}$$

Penalizes large weights

M(C)AP – Gradient

Gradient

$$\frac{\partial}{\partial w_i} \ln \left[p(\mathbf{w}) \prod_{j=1}^n P(y^j \mid \mathbf{x}^j, \mathbf{w}) \right]$$

$$p(\mathbf{w}) = \prod_{i} \frac{1}{\kappa \sqrt{2\pi}} e^{\frac{-w_i^2}{2\kappa^2}}$$

Zero-mean Gaussian prior

$$\frac{\partial}{\partial w_i} \ln p(\mathbf{w}) + \frac{\partial}{\partial w_i} \ln \left[\prod_{j=1}^n P(y^j \mid \mathbf{x}^j, \mathbf{w}) \right]$$
Same as before
$$\propto \frac{-w_i}{\kappa^2}$$
Extra term Penalizes large weights

M(C)LE vs. M(C)AP

Maximum conditional likelihood estimate

$$\mathbf{w}^* = \arg \max_{\mathbf{w}} \ln \left[\prod_{j=1}^n P(y^j \mid \mathbf{x}^j, \mathbf{w}) \right]$$

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \sum_j x_i^j [y^j - P(Y = 1 \mid \mathbf{x}^j, \mathbf{w}^{(t)})]$$

Maximum conditional a posteriori estimate

$$\mathbf{w}^* = \arg \max_{\mathbf{w}} \ln \left[p(\mathbf{w}) \prod_{j=1}^n P(y^j \mid \mathbf{x}^j, \mathbf{w}) \right]$$

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \left\{ -\frac{1}{\kappa^2} w_i^{(t)} + \sum_j x_i^j [y^j - P(Y = 1 \mid \mathbf{x}^j, \mathbf{w}^{(t)})] \right\}$$

Connection to Gaussian Naïve Bayes

There are several distributions that can lead to a linear decision boundary.

As another example, consider a generative model (GNB):

$$Y \sim \text{Bernoulli}(\pi)$$

$$P(X_i|Y=y) = \frac{1}{\sqrt{2\pi\sigma_{i,y}^2}} e^{\frac{-(X_i - \mu_{i,y})^2}{2\sigma_{i,y}^2}}$$

Gaussian class conditional densities

Assume variance is independent of class, i.e. $\sigma_{i,0}^2 = \sigma_{i,1}^2$

Connection to Gaussian Naïve Bayes

$$P(X_i|Y=y) = \frac{1}{\sqrt{2\pi\sigma_i^2}} e^{\frac{-(X_i - \mu_{i,y})^2}{2\sigma_i^2}}$$

Using conditionally independent assumption,

$$\log \frac{P(X|Y=0)}{P(X|Y=1)} = \log \prod_{i=1}^{d} \frac{P(X_i|Y=0)}{P(X_i|Y=1)}$$

Decision boundary:

$$\log \frac{P(Y=0|X)}{P(Y=1|X)} = \log \frac{P(Y=0)P(X|Y=0)}{P(Y=1)P(X|Y=1)} = \log \frac{1-\pi}{\pi} + \log \frac{P(X|Y=0)}{P(X|Y=1)}$$

$$= \log \frac{1-\pi}{\pi} + \sum_{i} \frac{\mu_{i,1}^2 - \mu_{i,0}^2}{2\sigma_i^2} + \sum_{i} \frac{\mu_{i,0} - \mu_{i,1}}{\sigma_i^2} X_i =: w_0 + \sum_{i} w_i X_i$$
 Constant term

Gaussian Naïve Bayes vs. Logistic Regression

Set of Gaussian
Naïve Bayes parameters
(feature variance
independent of class label)

Set of Logistic Regression parameters

- Representation equivalence
 - But only in a special case!!! (GNB with class-independent variances)
- But what's the difference???
- LR makes no assumptions about P(X|Y) in learning!!!
- Loss function!!!
 - Optimize different functions \rightarrow Obtain different solutions

Naïve Bayes vs. Logistic Regression

Consider Y boolean, X_i continuous, X=<X₁ ... X_d>

Number of parameters:

- NB: 4d +1 π , $(\mu_{1,y}, \mu_{2,y}, ..., \mu_{d,y})$, $(\sigma^2_{1,y}, \sigma^2_{2,y}, ..., \sigma^2_{d,y})$ y = 0,1
- LR: d+1 W_0 , W_1 , ..., W_d

Estimation method:

- NB parameter estimates are uncoupled
- LR parameter estimates are coupled

Generative vs Discriminative

[Ng & Jordan, NIPS 2001]

Given infinite data (asymptotically),

If conditional independence assumption holds, Discriminative and generative NB perform similar.

$$\epsilon_{
m Dis,\infty} \sim \epsilon_{
m Gen,\infty}$$

If conditional independence assumption does NOT holds, Discriminative outperforms generative NB.

$$\epsilon_{\mathrm{Dis},\infty} < \epsilon_{\mathrm{Gen},\infty}$$

Generative vs Discriminative

Given finite data (n data points, d features),

[Ng & Jordan, NIPS 2001]

$$\epsilon_{\mathrm{Dis},n} \le \epsilon_{\mathrm{Dis},\infty} + O\left(\sqrt{\frac{d}{n}}\right)$$

$$\epsilon_{\mathrm{Gen},n} \le \epsilon_{\mathrm{Gen},\infty} + O\left(\sqrt{\frac{\log d}{n}}\right)$$

Naïve Bayes (generative) requires n = O(log d) to converge to its asymptotic error, whereas Logistic regression (discriminative) requires n = O(d).

Why? "Independent class conditional densities"

* parameter estimates not coupled – each parameter is learnt independently, not jointly, from training data.

Naïve Bayes vs Logistic Regression

<u>Verdict</u>

Both learn a linear decision boundary.

Naïve Bayes makes more restrictive assumptions and has higher asymptotic error,

BUT

converges faster to its less accurate asymptotic error.

Experimental Comparison (Ng-Jordan'01)

UCI Machine Learning Repository 15 datasets, 8 continuous features, 7 discrete features

— Naïve Bayes

---- Logistic Regression

What you should know

- LR is a linear classifier
 - decision rule is a hyperplane
- LR optimized by conditional likelihood
 - no closed-form solution
 - concave \rightarrow global optimum with gradient ascent
 - Maximum conditional a posteriori corresponds to regularization
- Gaussian Naïve Bayes with class-independent variances representationally equivalent to LR
 - Solution differs because of objective (loss) function
- In general, NB and LR make different assumptions
 - NB: Features independent given class \rightarrow assumption on P(X|Y)
 - LR: Functional form of P(Y|X), no assumption on P(X|Y)
- Convergence rates
 - GNB (usually) needs less data
 - LR (usually) gets to better solutions in the limit

Recitation Tomorrow!

- MLE, MAP, Naïve Bayes, Logistic Regression
- Strongly recommended!!
- Place: NSH 1507 (<u>Note</u>)
- Time: 5-6 pm

Jayant

Comparison Chart

 http://www.cs.cmu.edu/~aarti/Class/10701/t able.html