
MAP for Gaussian mean and variance
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• Conjugate priors

– Mean: Gaussian prior

– Variance: Wishart Distribution

• Prior for mean:

= N(h,l2)



MAP for Gaussian Mean
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MAP under Gauss-Wishart prior - Homework

(Assuming known
variance s2)

Independent of s2  if 

l2  = s2/s
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Goal:

Classification

Sports
Science
News

Features, X Labels, Y

Probability of Error



Optimal Classification

Optimal predictor:
(Bayes classifier)
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• Even the optimal classifier makes mistakes R(f*) > 0
• Optimal classifier depends on unknown distribution

Bayes risk

0

0.5

1



Optimal Classifier

Bayes Rule:

Optimal classifier:
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Class conditional 
density

Class prior



Example Decision Boundaries

• Gaussian class conditional densities  (1-dimension/feature)
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Decision Boundary



Example Decision Boundaries

• Gaussian class conditional densities (2-dimensions/features)
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Decision Boundary



Learning the Optimal Classifier

Optimal classifier:
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Need to know Prior P(Y = y) for all y

Likelihood P(X=x|Y = y) for all x,y

Class conditional 
density

Class prior



Learning the Optimal Classifier

Task: Predict whether or not a picnic spot is enjoyable

Training Data: 

Lets learn P(Y|X) – how many parameters?
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X = (X1 X2 X3 …        …       Xd)          Y

Prior: P(Y = y) for all y

Likelihood: P(X=x|Y = y) for all x,y

n rows

K-1 if K labels

(2d – 1)K if d binary features



Learning the Optimal Classifier

Task: Predict whether or not a picnic spot is enjoyable

Training Data: 

Lets learn P(Y|X) – how many parameters?
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X = (X1 X2 X3 …        …       Xd)          Y

2dK – 1  (K classes, d binary features)

n rows

Need n >> 2dK – 1 number of training data to learn all parameters



Conditional Independence
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• X is conditionally independent of Y given Z:

probability distribution governing X is independent of the value 
of Y, given the value of Z

• Equivalent to:

• e.g.,

Note: does NOT mean Thunder is independent of Rain



Conditional vs. Marginal 
Independence

• C calls A and B separately and tells them a number n ϵ {1,…,10} 

• Due to noise in the phone, A and B each imperfectly (and 
independently) draw a conclusion about what the number was.

• A thinks the number was na and B thinks it was nb.

• Are na and nb marginally independent?

– No, we expect e.g. P(na = 1 | nb = 1) > P(na = 1)

• Are na and nb conditionally independent given n?

– Yes, because if we know the true number, the outcomes na

and nb are purely determined by the noise in each phone.

P(na = 1 | nb = 1, n = 2) = P(na = 1 | n = 2)
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• Predict Lightening

• From two conditionally Independent features

– Thunder 

– Rain

# parameters needed to learn likelihood given L

P(T,R|L) 

With conditional independence assumption

P(T,R|L) = P(T|L) P(R|L)

Prediction using Conditional 
Independence

(22-1)2 = 6

(2-1)2 + (2-1)2 = 4



Naïve Bayes Assumption
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• Naïve Bayes assumption:

– Features are independent given class:

– More generally:

• How many parameters now?

• Suppose X is composed of d binary features

(2-1)dK vs. (2d-1)K



Naïve Bayes Classifier
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• Given:
– Class Prior P(Y)
– d conditionally independent features X given the class Y
– For each Xi, we have likelihood P(Xi|Y)

• Decision rule:

• If conditional independence assumption holds, NB is 
optimal classifier! But worse otherwise.



Naïve Bayes Algo – Discrete features

• Training Data

• Maximum Likelihood Estimates

– For Class Prior 

– For Likelihood

• NB Prediction for test data
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Subtlety 1 – Violation of NB 
Assumption

18

• Usually, features are not conditionally independent:

• Actual probabilities P(Y|X) often biased towards 0 or 1 
(Why?)

• Nonetheless, NB is the single most used classifier out there

– NB often performs well, even when assumption is violated
– [Domingos & Pazzani ’96] discuss some conditions for good 

performance



Subtlety 2 – Insufficient training data
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• What if you never see a training instance where 
X1=a when Y=b?
– e.g., Y={SpamEmail}, X1={‘Earn’}
– P(X1=a | Y=b) = 0

• Thus, no matter what the values X2,…,Xd take:

– P(Y=b | X1=a,X2,…,Xd) = 0

• What now???



MLE vs. MAP
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• Beta prior equivalent to extra coin flips
• As N →1, prior is “forgotten”
• But, for small sample size, prior is important!

What if we toss the coin too few times?

• You say: Probability next toss is a head = 0

• Billionaire says: You’re fired! …with prob 1 



Naïve Bayes Algo – Discrete features

• Training Data

• Maximum A Posteriori Estimates – add m “virtual” examples

Assume priors 

MAP Estimate

Now, even if you never observe a class/feature posterior 
probability never zero.

21

# virtual examples 
with Y = b



Case Study: Text Classification
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• Classify e-mails

– Y = {Spam,NotSpam}

• Classify news articles

– Y = {what is the topic of the article?}

• Classify webpages

– Y = {Student, professor, project, …}

• What about the features X?

– The text!



Features X are entire document – Xi

for ith word in article
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NB for Text Classification
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• P(X|Y) is huge!!!
– Article at least 1000 words, X={X1,…,X1000}

– Xi represents ith word in document, i.e., the domain of Xi is entire 
vocabulary, e.g., Webster Dictionary (or more), 10,000 words, etc.

• NB assumption helps a lot!!!
– P(Xi=xi|Y=y) is just the probability of observing word xi at the ith position 

in a document on topic y



Bag of words model
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• Typical additional assumption – Position in document doesn’t 
matter: P(Xi=xi|Y=y) = P(Xk=xi|Y=y) 
– “Bag of words” model – order of words on the page ignored

– Sounds really silly, but often works very well!

When the lecture is over, remember to wake up the 
person sitting next to you in the lecture room.



Bag of words model
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• Typical additional assumption – Position in document doesn’t 
matter: P(Xi=xi|Y=y) = P(Xk=xi|Y=y) 
– “Bag of words” model – order of words on the page ignored

– Sounds really silly, but often works very well!

in is lecture lecture next over person remember room 
sitting the the the to to up wake when you



Bag of words approach
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aardvark 0

about 2

all 2

Africa 1

apple 0

anxious 0

...

gas 1

...

oil 1

…

Zaire 0



NB with Bag of Words for text 
classification
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• Learning phase:

– Class Prior P(Y)

– P(Xi|Y) 

• Test phase:

– For each document

• Use naïve Bayes decision rule

Explore in HW



Twenty news groups results
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Learning curve for twenty news 
groups
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What if features are continuous?
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Eg., character recognition: Xi is intensity at ith pixel

Gaussian Naïve Bayes (GNB):

Different mean and variance for each class k and each pixel i.

Sometimes assume variance

• is independent of Y (i.e., si), 
• or independent of Xi (i.e., sk)
• or both (i.e., s)



Estimating parameters: 
Y discrete, Xi continuous
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Maximum likelihood estimates:

jth training image
ith pixel in 

jth training image

kth class



Example: GNB for classifying mental 
states
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~1 mm resolution

~2 images per sec.

15,000 voxels/image

non-invasive, safe

measures Blood Oxygen 
Level Dependent (BOLD) 
response

[Mitchell et al.]



Gaussian Naïve Bayes: Learned voxel,word
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[Mitchell et al.]

15,000 voxels
or features

10 training 
examples or
subjects per
class



Learned Naïve Bayes Models –
Means for P(BrainActivity | WordCategory)
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Animal wordsPeople words

Pairwise classification accuracy: 85% [Mitchell et al.]



What you should know…
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• Optimal decision using Bayes Classifier

• Naïve Bayes classifier
– What’s the assumption

– Why we use it

– How do we learn it

– Why is Bayesian estimation important

• Text classification
– Bag of words model

• Gaussian NB
– Features are still conditionally independent

– Each feature has a Gaussian distribution given class


