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MLE vs. MAP

e Maximum Likelihood estimation (MLE)

Choose value that maximizes the probability of observed data

O\ = arg m@ax P(D|0)

e Maximum a posteriori (MAP) estimation

Choose value that is most probable given observed data and
prior belief

Orjap = arg max P(6|D)
= arg mgax P(DI|0)P(0)

When is MAP same as MLE?



MAP using Conjugate Prior
§MAP = arg méax P(0| D) = arg m@ax P(D|6)P(0)

Coin flip problem

Likelihood is ~ Binomial

P(D | 9) — QaH(l — 9)0(’1" i Beta(2,2)

If prior is Beta distribution, .

P(6) x 6°H~1(1 — )P~ ~ Beta(By, Br)

0.
meter value

Then posterior is Beta distribution —

P(0|D) ~ Beta(By + ap, Br + ar)

For Binomial, conjugate prior is Beta distribution. I T



MLE vs. MAP

&
ag + ar

OvLe =

What if we toss the coin too few times?
* You say: Probability next toss is a head =0
* Billionaire says: You're fired! ..with prob 1 ©

ag+ By —1
ag + By + o+ Br—2

e Beta prior equivalent to extra coin flips (regularization)
* As n — o0, prior is “forgotten”
* But, for small sample size, prior is important! ,

Orpjap =



Bayesians vs. Frequentists

You are no
good when
sample is

-l You give a

different

answer for
different
priors




What about continuous variables?

* Billionaire says: If | am measuring a continuous
variable, what can you do for me?

* You say: Let me tell you about Gaussians...

1 —(z—p)?
P(x | p,o0) = e 202  =N(uo?)

J\/ﬂ




Gaussian distribution

/\

_ —O0—O0—0—000L0OO00O—0—=0
Data, D 3 4 5 6 7 8 9 Sleep hrs

* Parameters: 1 — mean, 62 - variance

* Sleep hrs are i.i.d.:
— Independent events

— Identically distributed according to Gaussian
distribution



Properties of Gaussians

e affine transformation (multiplying by scalar
and adding a constant)
— X~ N(p,6?)
—Y=aX+b — Y~ N(au+b,a’c?)

e Sum of Gaussians
— X~ N(uy,0%)
—Y ~ N(u,,c?%)
— Z=X+Y = Z~ N(u+u,, 6%,+c2%)



MLE for Gaussian mean and variance



MLE for Gaussian mean and variance

1 T
AMLE = — Y
=1
D 1 N2
UMLE — 52(%—“)
i=1

Note: MLE for the variance of a Gaussian is biased

— Expected result of estimation is not true parameter!
— Unbiased variance estimator:

~2 ~\ 2
Tunbiased — " 1 Z (z; — i)
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MAP for Gaussian mean and variance

* Conjugate priors
— Mean: Gaussian prior
— Variance: Wishart Distribution

* Prior for mean:

P(p|m,A) = e 232 =N(n,A2
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MAP for Gaussian Mean

1 n
HMLE — _Z Ly

n.__

1=1

15 1M
~ g2 i=1m?/+)\2 (Assuming known
HMAP — n , 1 variance ¢?)

o2 1 \2

MAP under Gauss-Wishart prior - Homework
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What you should know...

* Learning parametric distributions: form known,
parameters unknown

— Bernoulli (0, probability of flip)
— Gaussian (1, mean and 6?2, variance)

* MLE
* MAP
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What loss function are we minimizing?

e Learning distributions/densities — Unsupervised learning

* Task: Learn P(X;6) = Learn 6 (know form of P, except 0)
* Experience: D={X;}!' ; ~ P(X;0)

* Performance: max P(D|0)

0
1 T
— mgin — Z —log P(X;|0) Negative log
n ':1 ‘ ' ° .
0 i Likelihood loss

loss(X;,0) y



Recitation Tomorrow!

Linear Algebra and Matlab
Strongly recommended!!
Place: NSH 1507 (Note: change from last time)

Time: 5-6 pm

Leman
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Classification

Goal: Construct a predictor f: X — Y to minimize
a risk (performance measure) R(f)

Sports
—>  Science
News

Features, X Labels, Y

R(f) = P(f(X)#Y) Probability of Error
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Optimal Classification

Optimal predictor: f*=argmin P(f(X) #Y)
(Bayes classifier) d

P =+[X) P(Y =« |X)

R(f™) Bayes risk

f*(x) = arg Srpax P(Y = y|X = z)
=y

* Even the optimal classifier makes mistakes R(f*) > 0
 Optimal classifier depends on unknown distribution Pxy-
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Optimal Classifier

Bayes Rule: P(Y|X) = P(XILT;(J;(Y)
POy =ylx =a) = 2= ﬂl(/xzjg(y =

Optimal classifier:

f*(x) = arg }n/nax P(Y =y|lX =x)
=y

= argmax P(X =z|Y =y)P(Y = y)
=y
\ J\ J

Y |

Class conditional Class prior
density
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Example Decision Boundaries

 Gaussian class conditional densities (1-dimension/feature)

exp (_(ﬂ'f — My)2)

205

P(X =z|Y =y) =
210

N

P(Y =e¢)P(X = z|Y =) P(Y = «)P(X = z|Y = o)

\—> Decision Boundary
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Example Decision Boundaries

 Gaussian class conditional densities (2-dimensions/features)

1

P(X =z|Y =y) =

X1 — X 1 21



Learning the Optimal Classifier

Optimal classifier:

f*(x) = arg }n/nax P(Y =y|lX =x)
=y

= argmax P(X =z|Y =y)P(Y =y)
=y
\ J\ )
Y |

Class conditional Class prior
density

Need to know Prior P(Y =vy) for all y
Likelihood P(X=x|Y =y) for all x,y
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Learning the Optimal Classifier

Task: Predict whether or not a picnic spot is enjoyable

Training Data:

N rows

X=(X, X, X, X) Y
Sky Temp Humid Wind Water Forecst | EnjoySpt
Sunny Warm Normal Strong Warm Same Yes
Sunny Warm High Strong Warm Same Yes
Rainy Cold High Strong Warm Change No
Sunny Warm High Strong Cool Change Yes

Lets learn P(Y|X) — how many parameters?

Prior: P(Y =vy) for all y

Likelihood: P(X=x|Y =y) for all x,y

K-1if K labels
(29— 1)K if d binary features
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Learning the Optimal Classifier

Task: Predict whether or not a picnic spot is enjoyable

Training Data:  X=(X; X, X3 .. e Xy) Y

Sky Temp Humid Wind Water Forecst | EnjoySpt

Sunny Warm Normal Strong Warm Same Yes
Sunny Warm High Strong Warm Same Yes
Rainy Cold High Strong Warm Change No
Sunny Warm High Strong Cool Change Yes

N rows

Lets learn P(Y|X) — how many parameters?
29K — 1 (K classes, d binary features)

Need n >> 29K — 1 number of training data to learn all parameters
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