MLE vs. MAP

Aarti Singh

Machine Learning 10-701/15-781 Sept 15, 2010

MLE vs. MAP

Maximum Likelihood estimation (MLE)

Choose value that maximizes the probability of observed data

$$\widehat{\theta}_{MLE} = \arg \max_{\theta} P(D|\theta)$$

Maximum a posteriori (MAP) estimation
 Choose value that is most probable given observed data and prior belief

$$\widehat{\theta}_{MAP} = \arg \max_{\theta} P(\theta|D)$$

$$= \arg \max_{\theta} P(D|\theta)P(\theta)$$

When is MAP same as MLE?

MAP using Conjugate Prior

$$\widehat{\theta}_{MAP} = \arg\max_{\theta} P(\theta \mid D) = \arg\max_{\theta} P(D \mid \theta)P(\theta)$$

Coin flip problem

Likelihood is ~ Binomial

$$P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$

If prior is Beta distribution,

$$P(\theta) \propto \theta^{\beta_H - 1} (1 - \theta)^{\beta_T - 1} \sim Beta(\beta_H, \beta_T)$$

Then posterior is Beta distribution

$$P(\theta|D) \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$

For Binomial, conjugate prior is Beta distribution.

MLE vs. MAP

$$\widehat{\theta}_{MLE} = \frac{\alpha_H}{\alpha_H + \alpha_T}$$

What if we toss the coin too few times?

- You say: Probability next toss is a head = 0
- Billionaire says: You're fired! ...with prob 1 ©

$$\widehat{\theta}_{MAP} = \frac{\alpha_H + \beta_H - 1}{\alpha_H + \beta_H + \alpha_T + \beta_T - 2}$$

- Beta prior equivalent to extra coin flips (regularization)
- As $n \to \infty$, prior is "forgotten"
- But, for small sample size, prior is important!

Bayesians vs. Frequentists

You are no good when sample is small

You give a different answer for different priors

What about continuous variables?

- Billionaire says: If I am measuring a continuous variable, what can you do for me?
- You say: Let me tell you about Gaussians...

$$P(x \mid \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}} = N(\mu, \sigma^2)$$

Gaussian distribution

- Parameters: μ mean, σ^2 variance
- Sleep hrs are i.i.d.:
 - Independent events
 - Identically distributed according to Gaussian distribution

Properties of Gaussians

 affine transformation (multiplying by scalar and adding a constant)

$$- X \sim N(\mu, \sigma^2)$$

$$- Y = aX + b \rightarrow Y \sim N(a\mu + b, a^2\sigma^2)$$

Sum of Gaussians

$$-X \sim N(\mu_X, \sigma^2_X)$$

$$- Y \sim N(\mu_{\gamma}, \sigma^2_{\gamma})$$

$$-Z = X+Y \rightarrow Z \sim N(\mu_X + \mu_Y, \sigma^2_X + \sigma^2_Y)$$

MLE for Gaussian mean and variance

MLE for Gaussian mean and variance

$$\widehat{\mu}_{MLE} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\widehat{\sigma}_{MLE}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \widehat{\mu})^2$$

Note: MLE for the variance of a Gaussian is biased

- Expected result of estimation is **not** true parameter!
- Unbiased variance estimator:

$$\widehat{\sigma}_{unbiased}^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \widehat{\mu})^2$$

MAP for Gaussian mean and variance

- Conjugate priors
 - Mean: Gaussian prior
 - Variance: Wishart Distribution

Prior for mean:

$$P(\mu \mid \eta, \lambda) = \frac{1}{\lambda \sqrt{2\pi}} e^{\frac{-(\mu - \eta)^2}{2\lambda^2}} = N(\eta, \lambda^2)$$

MAP for Gaussian Mean

$$\widehat{\mu}_{MLE} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\widehat{\mu}_{MAP} = \frac{\frac{1}{\sigma^2} \sum_{i=1}^n x_i + \frac{\eta}{\lambda^2}}{\frac{n}{\sigma^2} + \frac{1}{\lambda^2}}$$
 (Assuming known variance σ^2)

MAP under Gauss-Wishart prior - Homework

What you should know...

- Learning parametric distributions: form known, parameters unknown
 - Bernoulli (θ , probability of flip)
 - Gaussian (μ , mean and σ^2 , variance)
- MLE
- MAP

What loss function are we minimizing?

- Learning distributions/densities Unsupervised learning
- Task: Learn $P(X; \theta) \equiv \text{Learn } \theta$ (know form of P, except θ)
- Experience: D = $\{X_i\}_{i=1}^n \sim P(X;\theta)$

• Performance:
$$\max_{\theta} P(D|\theta)$$

$$= \min_{\theta} -\log P(D|\theta)$$

$$= \min_{\theta} \frac{1}{n} \sum_{i=1}^{n} -\log P(X_i|\theta)$$
 Negative log Likelihood loss
$$\log (X_i, \theta)$$

Recitation Tomorrow!

- Linear Algebra and Matlab
- Strongly recommended!!
- Place: NSH 1507 (<u>Note: change from last time</u>)
- Time: 5-6 pm

Leman

Bayes Optimal Classifier

Aarti Singh

Machine Learning 10-701/15-781 Sept 15, 2010

Classification

Goal: Construct a **predictor** $f: X \to Y$ to minimize a risk (performance measure) R(f)

Features, X

Sports Science News

Labels, Y

 $R(f) = P(f(X) \neq Y)$

Probability of Error

Optimal Classification

(Bayes classifier)

Optimal predictor:
$$f^* = \arg\min_{f} P(f(X) \neq Y)$$
(Bayes classifier)

$$f^*(x) = \arg\max_{Y=y} P(Y=y|X=x)$$

- Even the optimal classifier makes mistakes R(f*) > 0
- Optimal classifier depends on **unknown** distribution P_{XY}

Optimal Classifier

Bayes Rule:
$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$

$$P(Y=y|X=x) = \frac{P(X=x|Y=y)P(Y=y)}{P(X=x)}$$

Optimal classifier:

$$f^*(x) = \arg\max_{Y=y} P(Y=y|X=x)$$

$$= \arg\max_{Y=y} P(X=x|Y=y)P(Y=y)$$

Class conditional Class prior density

Example Decision Boundaries

Gaussian class conditional densities (1-dimension/feature)

$$P(X = x | Y = y) = \frac{1}{\sqrt{2\pi\sigma_y^2}} \exp\left(-\frac{(x - \mu_y)^2}{2\sigma_y^2}\right)$$

Example Decision Boundaries

Gaussian class conditional densities (2-dimensions/features)

$$P(X = x | Y = y) = \frac{1}{\sqrt{2\pi |\Sigma_y|}} \exp\left(-\frac{(x - \mu_y)\Sigma_y^{-1}(x - \mu_y)'}{2}\right)$$

Learning the Optimal Classifier

Optimal classifier:

$$f^*(x) = \arg\max_{Y=y} P(Y=y|X=x)$$

$$= \arg\max_{Y=y} P(X=x|Y=y)P(Y=y)$$
 Class conditional Class prior density

Learning the Optimal Classifier

Task: Predict whether or not a picnic spot is enjoyable

Training Data:
$$X = (X_1 \ X_2 \ X_3 \ ... \ X_d)$$

$$X = (X_1)$$

$$X_2$$

$$X_3$$

Sky	Temp	Humid	Wind	Water	Forecst	EnjoySpt
Sunny	Warm	Normal	Strong	Warm	\mathbf{Same}	Yes
Sunny	Warm	High	Strong	Warm	\mathbf{Same}	Yes
Rainy	Cold	High	Strong	Warm	Change	No
Sunny	Warm	High	Strong	Cool	Change	Yes

Lets learn P(Y|X) – how many parameters?

Prior: P(Y = y) for all y

K-1 if K labels

Likelihood: P(X=x|Y=y) for all x,y (2^d – 1)K if d binary features

Learning the Optimal Classifier

Task: Predict whether or not a picnic spot is enjoyable

Training Data:
$$X = (X_1 \ X_2 \ X_3 \ ... \ X_d)$$
 Y

Sky	Temp	Humid	Wind	Water	Forecst	EnjoySpt
Sunny	Warm	Normal	Strong	Warm	\mathbf{Same}	Yes
Sunny	Warm	High	Strong	${\rm Warm}$	\mathbf{Same}	Yes
Rainy	Cold	High	Strong	Warm	Change	No
Sunny	Warm	High	Strong	Cool	Change	Yes

Lets learn P(Y|X) – how many parameters?

2^dK - 1 (K classes, d binary features)

Need n >> 2^dK - 1 number of training data to learn all parameters