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Logistic Regression
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Assumes the following functional form for P(Y|X):

Logistic

function

(or Sigmoid):

Logistic function applied to a linear
function of the data
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Features can be discrete or continuous!



Logistic Regression is a Linear 
Classifier!
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Assumes the following functional form for P(Y|X):

Decision boundary:

(Linear Decision Boundary)
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Training Logistic Regression
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How to learn the parameters w0, w1, … wd?

Training Data

Maximum (Conditional) Likelihood Estimates

Discriminative philosophy – Don’t waste effort learning P(X), 
focus on P(Y|X) – that’s all that matters for classification!



Optimizing concave/convex function
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• Conditional likelihood for Logistic Regression is concave 

• Maximum of a concave function = minimum of a convex function

Gradient Ascent (concave)/ Gradient Descent (convex)

Gradient:

Learning rate, >0Update rule:



Logistic Regression as a Graph

Sigmoid Unit
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Neural Networks to learn f: X  Y

• f can be a non-linear function
• X (vector of) continuous and/or discrete variables

• Y (vector of) continuous and/or discrete variables

• Neural networks - Represent f by network of logistic/sigmoid 
units, we will focus on feedforward networks:

Input layer, X

Output layer, Y

Hidden layer, H

Sigmoid Unit









/activation function (also linear, threshold)

Differentiable 
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Forward Propagation for prediction

Sigmoid unit:

1-Hidden layer, 

1 output NN:

Prediction – Given neural network (hidden units and weights), use it to predict 

the label of a test point

Forward Propagation –

Start from input layer

For each subsequent layer, compute output of sigmoid unit

oh



• Consider regression problem f:XY , for scalar Y

y = f(x) +  assume noise N(0,), iid

deterministic

M(C)LE Training for Neural Networks

Learned 

neural network

• Let’s maximize the conditional data likelihood



• Consider regression problem f:XY , for scalar Y

y = f(x) +  noise N(0,σ)

deterministic

MAP Training for Neural Networks

Gaussian P(W) = N(0,σI)

ln P(W)   c i wi
2
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E – Mean Square Error

For Neural Networks, 

E[w] no longer convex in w



Using all training data D
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Error Gradient for a Sigmoid Unit
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Sigmoid Unit
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Error Gradient for 1-Hidden layer, 1-
output neural network

see Notes.pdf

http://www.cs.cmu.edu/~aarti/Class/10701/readings/Notes.pdf


(MLE)
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Using Forward propagation

yk = target output (label)                  

of output unit k

ok(h) = unit output 

(obtained by forward 

propagation)

wij = wt from i to j

Note: if i is input variable, 

oi = xi



Objective/Error no 

longer convex in 

weights





Regularization – train neural network by maximize M(C)AP

Early stopping 

Regulate # hidden units – prevents overly complex models
≡ dimensionality reduction

How to avoid overfitting?
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Artificial Neural Networks: Summary

• Actively used to model distributed computation in brain

• Highly non-linear regression/classification

• Vector-valued inputs and outputs

• Potentially millions of parameters to estimate - overfitting

• Hidden layers learn intermediate representations – how many 
to use?

• Prediction – Forward propagation

• Gradient descent (Back-propagation), local minima problems

• Mostly obsolete – kernel tricks are more popular, but coming 
back in new form as deep belief networks (probabilistic 
interpretation)


