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• High-Dimensions = Lot of Features

Document classification

Features per document = 

thousands of words/unigrams

millions of bigrams, contextual 

information

Surveys - Netflix

480189 users x 17770 movies
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High-Dimensional data



• High-Dimensions = Lot of Features

Discovering gene networks

10,000 genes x 1000 drugs

x several species

MEG Brain Imaging

120 locations x 500 time points 

x 20 objects
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High-Dimensional data



• Why are more features bad?

– Redundant features (not all words are useful to classify a document)

more noise added than signal

– Hard to interpret and visualize

– Hard to store and process data (computationally challenging)

– Complexity of decision rule tends to grow with # features. Hard to learn 
complex rules as VC dimension increases (statistically challenging)
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Curse of Dimensionality
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Dimensionality Reduction

“Unrolling the swiss roll”



• Feature Selection – Only a few features are relevant to the learning task

• Latent features – Some linear/nonlinear combination of features provides a 
more efficient representation than observed features
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Dimensionality Reduction

X1

X2

X3

X3 - Irrelevant
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Feature Selection
• Approach 1: Score each feature and extract a subset
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Feature Selection
• Approach 1: Score each feature and extract a subset

Common subset selection methods:

• One step: Choose d highest scoring features

• Iterative: 
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Feature Selection
• Approach 2: Regularization (MAP)

Integrate feature selection into learning objective by penalizing number of

features with non-zero weights

-ve log likelihood penalty

Small weights of 

features chosen

Convex 

compromise

Minimizes # features 

chosen
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Latent Feature Extraction
Combinations of observed features provide more efficient representation, and 
capture underlying relations that govern the data

E.g.  Ego, personality and intelligence are hidden attributes that characterize  
human behavior instead of survey questions

Topics (sports, science, news, etc.) instead of documents

Often may not have physical meaning

• Linear

Principal Component Analysis (PCA)

Factor Analysis

Independent Component Analysis (ICA)

• Nonlinear

Laplacian Eigenmaps

ISOMAP

Local Linear Embedding (LLE)



13

Principal Component Analysis (PCA)

Both features become relevant Only one relevant feature

Can we transform the features so that we only need to preserve one latent 

feature? Find linear projection so that projected data is uncorrelated.
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Principal Component Analysis (PCA)

Assumption: Data lies on or near a low d-dimensional linear subspace.

Axes of this subspace are an effective representation of the data

Identifying the axes is known as Principal Components Analysis, and 

can be obtained by Eigen or Singular value decomposition
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Principal Component Analysis (PCA)

Principal Components (PC) are orthogonal 

directions that capture most of the variance 

in the data

1st PC – direction of greatest variability in 

data

Projection of data points along 1st PC 

discriminate the data most along any one 

direction

Take a data point xi (D-dimensional vector)

Projection of xi onto the 1st PC v is vTxi

xi v

vTxi
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Principal Component Analysis (PCA)

Principal Components (PC) are orthogonal 

directions that capture most of the variance 

in the data

1st PC – direction of greatest variability in 

data

2nd PC – Next orthogonal (uncorrelated) 

direction of greatest variability

(remove all variability in first direction, then 

find next direction of greatest variability)

And so on …

xi

vTxi

xi-v
Txi
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Principal Component Analysis (PCA)

Let v1, v2, …, vd denote the principal components

Orthogonal and unit norm      vi
T vj = 0    i ≠ j

vi
T vi = 1 

Find vector that maximizes sample variance of projection

Assume data are centered

Data points X = [ x1 x2 … xn]

Wrap constraints into the 

objective function



18

Principal Component Analysis (PCA)

Sample variance of projection = 

Thus, the eigenvalue λ denotes the amount of variability captured along 

that dimension (aka amount of energy along that dimension).

Eigenvalues λ1 > λ2 > λ3 > … 

The 1st Principal component v1 is the eigenvector of the sample covariance 

matrix XXT associated with the largest eigenvalue λ1

The 2nd Principal component v2 is the eigenvector of the sample covariance 

matrix XXT associated with the second largest eigenvalue λ2

And so on …

Therefore, v is the eigenvector of sample correlation/ 

covariance matrix XXT
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Computing the PCs

Eigenvectors are solutions of the following equation:

Non-zero solution v ≠ 0 possible only if

This is a Dth order equation in λ, can have at most D distinct solutions (roots

of the characteristic equation)

Once eigenvalues are computed, solve for eigenvectors (Principal Components)

using

For symmetric matrices, eigenvectors for distinct eigenvalues are orthogonal.

Characteristic Equation
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So, the new axes are the eigenvectors of the matrix of sample correlations 
XXT of the data, which capture the similarities of the original features 
based on how data samples project to the new axes.

Transformed features are uncorrelated.

• Geometrically: centering followed by rotation

– Linear transformation

Principal Component Analysis (PCA)

x1

x2
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Another interpretation

Maximum Variance Subspace: PCA finds vectors v such that projections on to the 

vectors capture maximum variance in the data

Minimum Reconstruction Error: PCA finds vectors v such that projection on to the

vectors yields minimum MSE reconstruction 

xi v

vTxi



22

Dimensionality Reduction using PCA

The eigenvalue λ denotes the amount of variability captured along 

that dimension.

Zero eigenvalues indicate no variability along those directions => 

data lies exactly on a linear subspace

Only keep data projections onto principal components with non-

zero eigenvalues, say v1, …, vd where d = rank (XXT)

Original Representation Transformed representation

data point projections

xi = [xi1, xi2, …. xiD] [v1Txi, v2Txi, … vdTxi]

(D-dimensional vector) (d-dimensional vector)

xi v

vTxi
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Dimensionality Reduction using PCA

In high-dimensional problem, data usually lies near a linear subspace, as 

noise introduces small variability

Only keep data projections onto principal components with large eigenvalues

Can ignore the components of lesser significance. 

You might lose some information, but if the eigenvalues are small, you don’t lose 
much
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