Announcement

* HW 1 out TODAY — Watch your email



What is Machine Learning?
(Formally)



What is Machine Learning?

Study of algorithms that

* improve their performance

e at some task

* with experience

Data

(experience)

—

Learning algorithm

(task)

> Understanding

(performance)



Supervised Learning Task

Task: Given X ¢ &, predict Y € . X - test data

= Construct prediction rule f: X —» Y

I::} “Anemic cell (0)”

=) “Healthy cell (1)




Performance Measures

Performance:

loss(Y, f(X)) - Measure of closeness between true label Y and
prediction f(X)

X Y fiX) loss(Y, f(X))
“Anemic cell” “Anemic cell” 0
“Healthy cell” 1

loss(Y,, £(X)) = Lyp(x)£y) 0/1 loss




Performance Measures

Performance:

loss(Y, f(X)) - Measure of closeness between true label Y and
prediction f(X)

X Share price, Y f(X) loss(Y, f(X))
Past performance, “$24.50” “$24.50" 0
trade volume etc. ' '
as of Sept 8, 2010 “$26.00” 1?
“$26.10” 2?

loss(Y, f(X)) = (f(X) —Y)2 square loss




Performance Measures

Performance:

loss(Y, f(X)) - Measure of closeness between true label Y and
prediction f(X)

Don’t just want label of one test data (cell image), but any cell
image X € X

(X,Y) ~ Pxy
Given a cell image drawn randomly from the collection of all
cell images, how well does the predictor perform on average?

Risk R(f) = Exy [loss(Y, f(X))]




Performance Measures

Performance: Risk R(f) = Eyy [loss(Y, f(X))]

loss(Y, £(X)) Risk R(f)
> “Anemic cell” i (x)£Y) P(f(X) #Y)
0/1 loss Probability of Error

T 7T e share Price (f(X) -Y)? E[(f(X) —Y)?]

square loss Mean Square Error




Bayes Optimal Rule

|ldeal goal: Construct prediction rule f*: X — Y

f*=arg mfin Exy [loss(Y, f(X))]

Bayes optimal rule

Best possible performance:

Bayes Risk  R(f*) < R(f) for all f

BUT... Optimal rule is not computable - depends on unknown P, !
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Experience - Training Data

Can’t minimize risk since P,, unknown!

Training data (experience) provides a glimpse of P,,

(observed) {(X;, Y;)}™ , i.d.d.

.

, Healthy

cell

cell

XY (unknown)

independent, identically distributed

~N

7

\

2 #W Anemic

P

Provided by expert,
measuring device,
some experiment, ...
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Supervised Learning

Task: Given X ¢ x, predict Y € .

= Construct prediction rule f: X —» Y
Performance: Risk R(f) = Exy [loss(Y, f(X))]
(X,Y) ~ Pxy

Exper‘ience: Training data {(X;, Y;) iy LLd. Pxy (unknown)

, Healthy
cell

d - d
‘/ 4
, Anemi
f"’\l -

" o ~
e N r
'., , Healthy

cell
| o ~
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Machine Learning Algorithm

\N 7 3
, Healthy
7 cell
& 7 J \ /
— N ] =]
‘ , Healthy :
cell :
o ~

Wy 48 , Anemic

cell

-

Training data {(X;,Y;)}—

Learning algorithm

=7

J/‘; is a mapping from X — )/

Test data X

Note: test data # training data

n (/’
fn = “Anemic cell”
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Issues in ML

* A good machine learning algorithm
— Does not overfit training data

Training data
@ Football
Player

e < ® No

o0 00

()] ()]

= =
O Test data

— Generalizes well to test data More later ...
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Performance Revisited

Performance: (of a learning algorithm)

How well does the algorithm do on average

1. for a test cell image X drawn at random, and

2. for aset of training images and labels D, = {(X;, Y;)}*_ 4
drawn at random

Expected Risk (aka Generalization Error)

Ep, |R(fn)| =Ep, [Exy |loss(Y, fa(X))]]
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How to sense Generalization Error?

* Can’t compute generalization error. How can we get a sense
of how well algorithm is performing in practice?

* One approach -

— Split available data into two sets {(X;, ¥;)}; {(X,Y/)

10 71

— Training Data — used for training the algorithm

{(X5, )y Learning algorithm |:> n

— Test Data (a.k.a. Validation Data, Hold-out Data) — provides
estimate of generalization error

1 2 ~
Test Error= — ) [lOSS(Y%’, fn(Xé))}
=1

Why not use
Training Error?
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Supervised vs. Unsupervised Learning

Supervised Learning — Learning with a teacher

{(X5, V) ey > | Learning algorithm :> fn

Documents, topics Mapping between
Documents and topics

Unsupervised Learning — Learning without a teacher

(X, j‘> Learning algorithm :> fn

Documents Model for word
distribution OR
Clustering of similar
documents
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Lets get to
some learning algorithms!



Learning Distributions
(Parametric Approach)

Aarti Singh

Machine Learning 10-701/15-781
Sept 13, 2010

ACHI




Your first consulting job

* A billionaire from the suburbs of Seattle asks you a
guestion:

— He says: | have a coin, if | flip it, what’s the probability it
will fall with the head up?

— You say: Please flip it a few times:

— You say: The probability is:  3/5
— He says: Why???
— You say: Because...
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Bernoulli distribution

 P(Heads) =0, P(Tails)=1-0

* Flipsarei.i.d.:
— Independent events
— Identically distributed according to Bernoulli distribution

Choose 0 that maximizes the probability of observed data
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Maximum Likelihood Estimation

Choose 0 that maximizes the probability of observed data

Ovrp = argmax P(D | 6)

MLE of probability of head:
XH
ap + ar

OviLE = =3/5

"Frequency of heads”
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How many flips do | need?

X7
ag + ar

OvLe =

Billionaire says: | flipped 3 heads and 2 tails.

You say: 6 = 3/5, | can prove it!

He says: What if | flipped 30 heads and 20 tails?

You say: Same answer, | can prove it!

He says: What’s better?

You say: Hmm... The more the merrier???

He says: Is this why | am paying you the big bucks???
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Slmple bound (Hoeffding’s inequality)

Qf

* Forn=oaytaq,and 0,7 p = i
ag T ar

* Let 0" be the true parameter, for any £>0:

~ 2
P(|6—0"|>¢e) < 2e 20
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PAC Learning

* PAC: Probably Approximate Correct

 Billionaire says: | want to know the coin parameter 0,
within € = 0.1, with probability at least 1-0 = 0.95.
How many flips?

N 2
P(|O—0"|>e) < 2e2n¢

Sample complexity

In(2/6)
ez 2€é
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What about prior knowledge?

* Billionaire says: Wait, | know that the coin is “close” to

50-50. What can you do for me now?

* You say: | can learn it the Bayesian way...

e Rather than estimating a single 0, we obtain a

distribution over possible values of 0

P(0)

Before data

50-50

=

P(0|D)

After data




Bayesian Learning

* Use Bayes rule:
P(D | 6)P(06)
P(D)

PO|D) =

* Or equivalently:

Bayes, Thomas (1763) An essay

P(9 | D) 0.¢ P(D | G)P(Q) towards solving a problem in the

doctrine of chances. Philosophical
Transactions of the Royal Society of

posterior likelihood prior London, 53:370-418
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Prior distribution

 What about prior?

— Represents expert knowledge (philosophical approach)
— Simple posterior form (engineer’s approach)

* Uninformative priors: ~
— Uniform distribution a8
* Conjugate priors: 0

— Closed-form representation of posterior
— P(0) and P(0|D) have the same form
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Conjugate Prior
 P(0) and P(O|D) have the same form
Eg. 1 Coin flip problem

Likelihood is ~ Binomial
P(D|0) =0%H(1—0)°T
If prior is Beta distribution,
pfH—1(1 — 9)Pr—1
B(Bu, Br)
Then posterior is Beta distribution
P(0|D) ~ Beta(By + am, Bt + ar)

~ Beta’(ﬁHa /6T)

P(0) =

For Binomial, conjugate prior is Beta distribution.
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Beta’(ﬁHa /8T)

Beta distribution

Beta(1,1)
J
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More concentrated as values of 3, B; increase
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Beta conjugate prior

P(0) ~ Beta(Bgy, Br) P(0|D) ~ Beta(Bg + oy, Br + aT)

Beta(2,2)

6 Beta(3,2) ] Beta(30,20)
14} 1
15} 1 5r
12} 1
5 1) 1 - A
o 9 g
@ 08} ] o I
B 8 g3
@ o6 ] K 3
2,
0.4/ 1 05/
02 1
0 : : : : 0 . . . . 0 .
0 0.2 04 0.6 0.8 1 0 0.2 04 06 0.8 1 0 0.2 04 06 0.8
parameter value parameter value parameter value

Asn=oao,+ 0o,
increases

As we get more samples, effect of prior is “washed out”
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Conjugate Prior

 P(0) and P(0|D) have the same form

Eg. 2 Dice roll problem (6 outcomes instead of 2) )
Likelihood is ~ Multinomial(0 = {0, 0,, ..., 0,})
P(D|0) =67052...6, "
If prior is Dirichlet distribution,

T, 07t
B(B1, .-, BE)

Then posterior is Dirichlet distribution
P(6|D) ~ Dirichlet(81 4+ a1, ..., B, + az)

P(0) = ~ Dirichlet(51,..., B)

For Multinomial, conjugate prior is Dirichlet distribution.



Maximum A Posteriori Estimation

Choose 0 that maximizes a posterior probability

Orvjap = arg max P(6 | D)
= arg mgax P(D | 0)P(0)

MAP estimate of probability of head:

P(0|D) ~ Beta(Bg + oy, BT + aT)

ag+ By —1 Mode of Beta
ag+ By + oy + By — 2  distribution
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Opap =



