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i.i.d to sequential data

• So far we assumed independent, 
identically distributed data

• Sequential data

– Time-series data
E.g. Speech



i.i.d to sequential data

• So far we assumed independent, 
identically distributed data

• Sequential data

– Time-series data
E.g. Speech

– Characters in a sentence

– Base pairs along a DNA strand



Markov Models

• Joint Distribution

• Markov Assumption (mth order)

Current observation 
only depends on past
m observations

Chain rule



Markov Models

• Markov Assumption 

1st order

2nd order



Markov Models

• Markov Assumption 

1st order

mth order

n-1th order

≡ no assumptions – complete (but directed) graph

# parameters in
stationary model
K-ary variables

O(K2)

O(Km+1)

O(Kn)

Homogeneous/stationary Markov model (probabilities don’t depend on n)



Hidden Markov Models

• Distributions that characterize sequential data with few 
parameters but are not limited by strong Markov assumptions.

Observation space Ot ϵ {y1, y2, …, yK}

Hidden states St ϵ {1, …, I}

O1 O2 OT-1 OT

S1 S2 ST-1 ST



Hidden Markov Models

O1 O2 OT-1 OT

S1 S2 ST-1 ST

1st order Markov assumption on hidden states  {St}  t = 1, …, T
(can be extended to higher order).

Note: Ot depends on all previous observations {Ot-1,…O1}



Hidden Markov Models

• Parameters – stationary/homogeneous markov model 
(independent of time t)

Initial probabilities

p(S1 = i) = πi

Transition probabilities

p(St = j|St-1 = i) = pij

Emission probabilities

p(Ot = y|St= i) = 

O1 O2 OT-1 OT

S1 S2 ST-1 ST



HMM Example

• The Dishonest Casino

A casino has two die:

Fair dice

P(1) = P(2) = P(3) = P(5) = P(6) = 1/6

Loaded dice

P(1) = P(2) = P(3) = P(5) = 1/10
P(6) = ½

Casino player switches back-&-
forth between fair and loaded die 
once every 20 turns



HMM Problems



HMM Example

F F FL L L

L

F



State Space Representation

• Switch between F and L once every 20 turns (1/20 = 0.05)

• HMM Parameters

Initial probs P(S1 = L) = 0.5 = P(S1 = F)
Transition probs P(St = L/F|St-1 = L/F) = 0.95

P(St = F/L|St-1 = L/F) = 0.05
Emission probabilities  P(Ot = y|St= F) = 1/6        y = 1,2,3,4,5,6

P(Ot = y|St= L) = 1/10      y = 1,2,3,4,5
= 1/2        y = 6

FL

0.05

0.05

0.950.95



Three main problems in HMMs

• Evaluation – Given HMM parameters & observation seqn

find prob of observed sequence

• Decoding – Given HMM parameters & observation seqn

find most probable 

sequence of hidden states

• Learning – Given HMM with unknown parameters and 
observation sequence

find parameters that maximize 

likelihood of observed data



HMM Algorithms

• Evaluation – What is the probability of the observed 
sequence? Forward Algorithm

• Decoding – What is the probability that the third roll was 
loaded given the observed sequence? Forward-Backward 
Algorithm

– What is the most likely die sequence given the observed 
sequence? Viterbi Algorithm

• Learning – Under what parameterization is the observed 
sequence most probable? Baum-Welch Algorithm (EM)



Evaluation Problem

• Given HMM parameters                                           & observation 
sequence

find probability of observed sequence

requires summing over all possible hidden state values at all 
times – KT exponential # terms!

Instead:

αT
k Compute recursively

O1 O2
OT-1 OT

S1 S2
ST-1 ST



Forward Probability

Compute forward probability       recursively over t αt
k

.

.

.

Chain rule

Markov assumption

Introduce St-1

Ot-1 Ot

St-1 StS1

O1



Forward Algorithm

Can compute αt
k for all k, t using dynamic programming:

• Initialize: α1
k = p(O1|S1 = k) p(S1 = k) for all k

• Iterate: for t = 2, …, T

αt
k = p(Ot|St = k) ∑ αt-1 p(St = k|St-1 = i)          for all k

• Termination: = ∑ αT

i

i

k

k



Decoding Problem 1

• Given HMM parameters                                           & observation 
sequence

find probability that hidden state at time t was k

αt
kCompute recursively βt

k

Ot-1 Ot

St-1 StS1

O1 OT-1 OT

ST-1 ST
St+1

Ot+1



Compute forward probability       recursively over t 

OT

ST

Backward Probability

βt
k

.

.

.

Chain rule

Markov assumption

Ot Ot+1

St St+1 St+2

Ot+2Introduce St+1



Backward Algorithm

Can compute βt
k for all k, t using dynamic programming:

• Initialize: βT
k = 1 for all k

• Iterate: for t = T-1, …, 1

for all k

• Termination:



Most likely state vs. Most likely 
sequence

• Most likely state assignment at time t

E.g. Which die was most likely used by the casino in the third roll given the 

observed sequence?

• Most likely assignment of state sequence

E.g. What was the most likely sequence of die rolls used by the casino 

given the observed sequence?

Not the same solution !
MLA of x?
MLA of (x,y)?



Decoding Problem 2

• Given HMM parameters                                           & observation 
sequence

find most likely assignment of state sequence

- probability of most likely sequence of states ending at 
state ST = k

VT
k

Compute recursively

VT
k



Viterbi Decoding

Compute probability       recursively over t 

.

.

.

Bayes rule

Markov assumption

Vt
k

Ot-1 Ot

St-1 StS1

O1



Viterbi Algorithm

Can compute Vt
k for all k, t using dynamic programming:

• Initialize: V1
k = p(O1|S1=k)p(S1 = k) for all k

• Iterate: for t = 2, …, T

for all k

• Termination:

Traceback:



Computational complexity

• What is the running time for Forward, Forward-Backward, 
Viterbi?

O(K2T) linear in T instead of O(KT) exponential in T!



Learning Problem

• Given HMM with unknown parameters                                    
and observation sequence

find parameters that maximize likelihood of observed data

hidden variables – state sequence

EM (Baum-Welch) Algorithm:

E-step – Fix parameters, find expected state assignments

M-step – Fix expected state assignments, update parameters

But likelihood doesn’t factorize 
since observations not i.i.d.



Baum-Welch (EM) Algorithm

• Start with random initialization of parameters

• E-step – Fix parameters, find expected state assignments

Forward-Backward algorithm



Baum-Welch (EM) Algorithm

• Start with random initialization of parameters

• E-step

• M-step

= expected # times
in state i

= expected # transitions
from state i to j

= expected # transitions
from state i

-1



Some connections

• HMM & Dynamic Mixture Models

Choice of mixture component depends
on choice of components for previous
observations

Dynamic mixture

A AA AO2 O3O1 OT

S2 S3S1 ST... 

... 

Static mixture

AO1

S1

N



Some connections

• HMM vs Linear Dynamical Systems (Kalman Filters)

HMM: States are Discrete

Observations Discrete or Continuous

Linear Dynamical Systems: Observations and States are multi-
variate Gaussians whose means are 
linear  functions of their parent states

(see Bishop: Sec 13.3)



HMMs.. What you should know

• Useful for modeling sequential data with few parameters 
using discrete hidden states that satisfy Markov assumption

• Representation - initial prob, transition prob, emission prob,            

State space representation

• Algorithms for inference and learning in HMMs

– Computing marginal likelihood of the observed sequence: 
forward algorithm

– Predicting a single hidden state: forward-backward

– Predicting an entire sequence of hidden states: viterbi

– Learning HMM parameters: an EM algorithm known as Baum-
Welch


