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i.i.d to sequential data

* So far we assumed independent, {Xx1» . e p(X)

identically distributed data

e Sequential data

— Time-series data
E.g. Speech
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i.i.d to sequential data

* So far we assumed independent, {Xx1» . s p(X)

identically distributed data

e Sequential data

— Time-series data
E.g. Speech

Amplitude

eeeeeee

— Characters in a sentence . . . . E
— Base pairs along a DNA strand
3 ! ! ! '; ! !




Markov Models

e Joint Distribution

p(X) = p(Xl,XQ,...,Xn)
= p(X1)p(Xe2|X1)p(X35| X2, X1) ... p(Xn|Xn=1, -y X1)
— Hp(Xn|Xn—1a°'°aXl) Chain rule
i=1

* Markov Assumption (mt" order)

p(X) = Hp(Xn|Xn_1, ...y Xn_m) Current observation
i=1 only depends on past
m observations



Markov Models

 Markov Assumption

1torder  p(X) = ][p(XnlXn-1)

2nd order




Markov Models

# parameters in
stationary model

 Markov Assumption K-ary variables

mn

1torder  p(X) = []p(XnlXn-1) O(K?)
1=1

mthorder  p(X) = ]]p(XnlXn-1,.., Xnom) O(K™)
1=1

n-1thorder p(X) = ]]p(XulXn-1,..., X1) O(K")

i=1
= no assumptions — complete (but directed) graph

Homogeneous/stationary Markov model (probabilities don't depend on n)



Hidden Markov Models

* Distributions that characterize sequential data with few
parameters but are not limited by strong Markov assumptions.

Observation space O; €{yy, Yo s Yk}
Hidden states S,€{1, ..., I}



Hidden Markov Models

p(Sla°"78TaOla"‘aOT)

15t order Markov assumption on hidden states {S;} t=1, ..., T

(can be extended to higher order).

Note: O, depends on all previous observations {O, 4,...0;}



Hidden Markov Models

* Parameters — stationary/homogeneous markov model
(independent of time t)

o S1 SZ

Initial probabilities .
S, =1)=m,

p( 1 ) i Ol 02

Transition probabilities

P(S¢=ilSea=1) =P p({Si}i=1, {0 }{1) =
T

Emission probabilities p(S1) | [ p(SelSe-1) | | p(O#]St)
t=2 t=1

p(ot= y|St= i) = qzy



HMM Example

e The Dishonest Casino

A casino has two die:

Fair dice
P(1) =P(2) =P(3) =P(5)=P(6) =1/6
Loaded dice

P(1) =P(2) =P(3) =P(5) =1/10
P(6) =7

Casino player switches back-&-
forth between fair and loaded die
once every 20 turns




HMM Problems

GIVEN: A sequence of rolls by the casino player

64621461461561:66616646616266165661636165156 6 6

QUESTION

e How likely is this sequence, given our model of how the casino
WOorks?
« Thisis the EVALUATION problem in HMMs

e \What portion of the sequence was generated with the fair die, and

what portion with the loaded die?
e Thisis the DECODING question in HMMs

e How “loaded’ is the loaded die? How “fair” is the fair die? How often

does the casino player change from fair to loaded, and back?
e Thisis the LEARNING question in HMMs



HMM Example

e Observed sequence: {O;},_;

O—O—O—O—O—D—

Y: "
3 0":
=

e Hidden sequence {St}’le or segmentation):

O—O—O—O—O—O—




State Space Representation

* Switch between F and L once every 20 turns (1/20 = 0.05)

0.05
0.95 0.95
0.05
* HMM Parameters

Initial probs P(S;=L)=0.5=P(S; =F)

Transition probs P(S,=L/F|S,,=L/F)=0.95
P(S, = F/L|S,, = L/F) = 0.05

Emission probabilities P(O,=y|S;=F)=1/6 yv=1,2,3,4,5,6

P(O,=y|S=L)=1/10 vy=1,2,3,4,5
=1/2 y=6



Three main problems in HMMs

* Evaluation — Given HMM parameters & observation seqn{O,}_,

find p({O;}7_,) prob of observed sequence

* Decoding — Given HMM parameters & observation seqn {O;}._,

.....

sequence of hidden states

e Learning — Given HMM with unknown parameters and {O:¢};—;
observation sequence

find arg mgxp({Ot}le\é’) parameters that maximize

likelihood of observed data



HMM Algorithms

e Evaluation — What is the probability of the observed
sequence? Forward Algorithm

* Decoding — What is the probability that the third roll was
loaded given the observed sequence? Forward-Backward
Algorithm

— What is the most likely die sequence given the observed
sequence? Viterbi Algorithm

* Learning — Under what parameterization is the observed
sequence most probable? Baum-Welch Algorithm (EM)



Evaluation Problem

Given HMM parameters p(S1), p(S:|S:—1),p(O:|S:) & observation
sequence {O:}/—,

find probability of observed sequence i f f i
p({Ot}L) = Z p({O:}{=1, {S1}{21)

Sy....S7
T
- Z p(S1) H (Se|Se-1) Hp (04| S¢)
81 ..... ST =2 t—1

requires summing over all possible hidden state values at all
times — K™ exponential # terms!

Instead:  p({O:}=) = > p({Oi}i=,, ST = k)
e\ J

I

of  Compute recursively




Forward Probability

p({Oi}i—1) = Zp({Ot}’f:l, St =k) = Za’:lf*

Compute forward probability a't‘ recursively over t

of = p(O,...,0: S =k)

Introduce S, ,
Chain rule

Markov assumption

= p(OdSi=k) Y ai_1p(Si = k|Si—1 = i)



Forward Algorithm

Can compute a.* for all k, t using dynamic programming:
* Initialize:  a;*=p(0,]S; =k) p(S; =k) for all k

* |terate:fort=2,.. T

= p(O,[S, = k) 3 o, p(S,=k|S,, =) for all k
I

e Termination:  p({O:}7 ) =3 o

k



Decoding Problem 1

* Given HMM parameters p(S1), p(St|Si—1),p(O:|S:) & observation
sequence {O:}/—,

find probability that hidden state at time t was k »p(S; = k[{O:}/_;)

p(Se =k, {O}4_1)

p(Ol, .. .,Ot,St = lf,OH_l, - .,OT)
= p(O1,...,04 5 = k)p(Ot41,...,07|S; = k)
\

Compute recursively ok B




Backward Probability

p(St — ka {Ot};zl) — p(017 ceey Ota St — k)p(OH—h v ey OT|St — k) — a?ﬁtk

Compute forward probability B{‘ recursively over t

Bf ‘= p(0t+1, chey OT|S,5 = k) St St+1 St+2 ST

Introduce S,

Chain rule

Markov assumption

— Zp(8t+1 = Z|St = k)p(0t+1|8t—|—1 — Z)/8§+1

i



Backward Algorithm

Can compute B.X for all k, t using dynamic programming:
* Initialize: B;*=1 for all k

* |terate:fort=T-1, ..., 1
5f = ZP(SHI — i‘St — k)p(0t+1|8t—|—1 = i)5§+1 for all k

o Termination: p(S; =k, {O:;},) = aFpF

p(St =k, {0 }i) — afﬁf :
p({O L) 2 i

p(St = kHOt};&T:l) —



Most likely state vs. Most likely
sequence

* Most likely state assighment at time t

arg mkaxp(St = k|{O;}]_,) = arg max o, kR

E.g. Which die was most likely used by the casino in the third roll given the
observed sequence?

* Most likely assignment of state sequence
arg max p({S;};=1[{O¢}i=1)

{St}t 1
E.g. What was the most likely sequence of die rolls used by the casino
given the observed sequence? x v Plxy)

o o o035

. MLA of x? o 7 005
Not the same solution ! MLA of (xy)? | 7z © o3
| 7

.3




Decoding Problem 2

* Given HMM parameters p(S;), p(S:|Si—1), p(O:|S;) & observation
sequence {O,}1_,

find most likely assignment of state sequence

arg {gl}%g p({Si}i=1{O:}i=1) = arg {?15’? p({Si}i—1,{0¢}i—1)

= argmax max p(St =k, {S;}, ", {0 Y1)
SR Fiy
\ )

!
Ve
Compute recursively

vk probability of most likely sequence of states ending at
state S; =k



Viterbi Decoding

ax p({St}i—1,{O+}/= 1)—maxVT

Compute probability V't< recursively over t

‘/tk e = g ma’s},( p(St:kasla"'ast—laOla---yOt)
Sl

Bayes rule a
Markov assumption O,

= p(O4|S; = k) maxp(S; = k[Se—1 =)V,



Viterbi Algorithm

Can compute V¢ for all k, t using dynamic programming:
e Initialize:  V,*=p(0,]|S,;=k)p(S; =k) for all k

* |terate:fort=2,.. T

VE = p(O4)S; = k) maxp(S, = k|S,_y =i)Vy,  forallk

e Termination: {m?X p({S Y, {0} )) = mng:z]f
St 3:1
Traceback: ST = arg max VE

7

Sty = argmaxp(S;|S,-1 = Vi



Computational complexity

 What is the running time for Forward, Forward-Backward,
Viterbi?

k O 7

a; = q' E :at—l Pik
i

kK _ Oi+1 i

61& = § Pk.,i 4; 6t—|—1
i

k @) )

Vi = ¢ maxpig Vi,

O(K?T) linear in T instead of O(K") exponential in T!



Learning Problem

* Given HMM with unknown parameters ¢ = {{r;}, {pi;}, {aF}}
and observation sequence O = {O,;} L,

find parameters that maximize likelihood of observed data

arg max p({O;}_, |0) But likelihood doesn't factorize
0 since observations not i.i.d.

hidden variables — state sequence {S;}/_;

EM (Baum-Welch) Algorithm:
E-step — Fix parameters, find expected state assignments
M-step — Fix expected state assignments, update parameters



Baum-Welch (EM) Algorithm

e Start with random initialization of parameters

* E-step - Fix parameters, find expected state assignments

(al)

Forward-Backward algorithm

§ij(t) = p(Si—1= 1,5 = j|0,0)

_ p(St—l — Z‘O,Q)p(St — .j? Ota <. 7OT|St—1 — 7’79)
p(Oy,...,07|Si—1 =1,0)

~ 7t = 1) pij q;" B
Bi1




Baum-Welch (EM) Algorithm

e Start with random initialization of parameters

° E_ T
step Z 7i(t) = expected # times
vi(t) = p(S; = i|0,0) t=1 in state |

T-1
Z 7i(t) = expected # transitions
t=1 from state i

§ij(t) = p(Si—1= 1,51 = 3|0, 0)

T-1
Z &i;(t) = expected # transitions
=1 from stateitoj

* M-step
o qr = Zg‘:lé‘ot:k?‘i(t)
1 T ‘
Pij = E{Z_II g’*.?(t) ZtZI 'Tt(t}



Some connections

* HMM & Dynamic Mixture Models

p(O1) = Y p(O4Si)p(S:)

> Choice of mixture component depends
on choice of components for previous
observations

Static mixture Dynamic mixture

N

-
_—




Some connections

« HMM vs Linear Dynamical Systems (Kalman Filters)

HMM:

Linear Dynamical Systems:

States are Discrete
Observations Discrete or Continuous

Observations and States are multi-
variate Gaussians whose means are
linear functions of their parent states

(see Bishop: Sec 13.3)



HMMs.. What you should know

Useful for modeling sequential data with few parameters
using discrete hidden states that satisfy Markov assumption

Representation - initial prob, transition prob, emission prob,

State space representation

Algorithms for inference and learning in HMMs

— Computing marginal likelihood of the observed sequence:
forward algorithm

— Predicting a single hidden state: forward-backward
— Predicting an entire sequence of hidden states: viterbi

— Learning HMM parameters: an EM algorithm known as Baum-
Welch



