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Computational Learning Theory

What general laws constrain inductive learning?

We seek theory to relate:
e Probability of successful learning
e Number of training examples
e Complexity of hypothesis space

e Accuracy to which target function is
approximated

e Manner in which training examples presented



1 lexit =
Sample Complexity i Fix>Y
C:xX-~>Y

How many training examples are sufficient to learn
the target concept?

1. If learner proposes instances, as queries to
teacher

e Learner proposes instance x, teacher provides
c()
2. If teacher (who knows ¢) provides training
examples

e teacher provides sequence of examples of form
(z,c(x))
@If some random process (e.g., nature) proposes

Instances P st

e instance x generated randomly, teacher
provides ¢(x)



Sample Complexity: 3

Given:
e set of instances X
e set of hypotheses H

e set of possible target concepts C C: é —> {O; ’3
Ce

e training instances generated by a fixed, unknown
probability dlStI'lbllthIlBO\VeI‘ X =P (< )

Learner observes a sequence D of training examples
of form (x,¢(x)), for some target concept ¢ € C

e instances x are drawn from distribution D
e teacher provides target value ¢(x) for each
Learner must output a hypothesis h estimating ¢

e h is evaluated by its performance on subsequent
instances drawn according to D

Note: randomly drawn instances, noise-free
classifications



True Error of a Hypothesis

Instance space X P(X)=D

Where ¢

and h disagree

Definition: The true error (denoted
errorp(h)) of hypothesis h with respect to
target concept ¢ and distribution D is the
probability that ~ will misclassify an instance
drawn at random according to D.

errorp(h) = lfé%[c(a:) # h(x)]



Two Notions of Error

Training error of hypothesis h with respect to
target concept c

e How often h(z) # c(x) over training instances D

>zeD 0(c(z) 7= h(z))
D]

errorp(h) = xFE’E)[c(a:) #= h(x)] =

‘ 

training
True error of hypothesis h with respect to ¢ examples
e How often h(x) # c(x) over future instances
drawn at random from D
, — Probability
errorp(h) = Prle(z) # h(z)] distribution
P(x)




Two Notions of Error

Can we bound
errorp(h)
Training error of hypothesis h with respect to in terms of
target concept ¢ errorp(h)
e How often h(z) # ¢(x) over training instances D 27

> zeD 0(c(z) # h(z))
D]

errorp(h) = xFE’E)[c(a:) #= h(x)] =

‘ 

training
True error of hypothesis h with respect to ¢ examples
e How often h(x) # c(x) over future instances
drawn at random from D
_ Probabilit
~(h) = Y
errorp(h) = Py le(z) # h(z)] distribution
P(x)




> zeD 0(c(z) # h(x))

errorp(h) = xIZE)[c(:r;) #= h(x)] = D

4 
training
examples

i . Probability
Prle(z) # h(z)] distribution

P(x)

Can we bound
errorp(h)

in terms of
errorp(h)

??

if D was a set of examples drawn from D and independent of h,

then we could use standard statistical confidence intervals to
determine that with 95% probability, errorp(h) lies in the interval:

errorp(h) (1 — errorp(h))

errorp(h) £ 1.96 .

but D is the fraining data for h ....




Version Spaces
Target concept is

the (usually
unknown) boolean

A hypothesis h is consistent with a set fn fo be learned

training examples D of target concept c if and ¢ X = {0,1}
only if h(z) = ¢(x) for each training example
(z,c(x)) in D.

Consistent(h, D) = (V{x,c(x)) € D) h(z) = ¢(x)

The version space, V .Sy p, with respect to
hypothesis space H and training examples D,
is the subset of hypotheses from H consistent
with all training examples in D.

VSyp={h € H|Consistent(h,D)}



Exhausting the Version Space

Hypothesis space H

. -~
error=.2

error=.1 r=4

.
. error=.2
error=.3 r=.3

r=.

(r = training error, error = true error)

Definition: The version space V .Sy p is said
to be e-exhausted with respect to ¢ and D. if
every hypothesis h in V. Sy p has true error less
than e with respect to ¢ and D.

(Vh € V. Sy p) errorp(h) < €



How many examples will e-exhaust the VS?

Theorem: [Haussler, 1988].

If the hypothesis space H is finite, and D is a
sequence of m > 1 independent random
examples of some target concept ¢, then for
any 0 < e < 1, the probability that the
version space with respect to H and D is not
e-exhausted (with respect to ¢) is less than

| H | 6—6772.



How many examples will e-exhaust the VS?

Theorem: [Haussler, 1988].

If the hypothesis space H is finite, and D is a
sequence of m > 1 independent random
examples of some target concept ¢, then for
any 0 < e < 1, the probability that the
version space with respect to H and D is not

e-exhausted (with respect to ¢) is less than Any(!) learner
|H|e™ " that outputs

a hypothesis

Interesting! This bounds the probability that any C?”ﬁis'lrlem
consistent learner will output a hypothesis A with i @

training
error(h) > € examples (i.e.,

an h

contained in

VSy;5)
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What it means

[Haussler, 1988]: probability that the version space is not e-exhausted
after m training examples is at most [Hle™ ™

Pr[(3h € H)s.t.(errorirqin(h) = O)A(errorirye(h) > €)] < |H|e ™"

T

Suppose we want this probability to be at most 6

1. How many training examples suffice?
1
m > ~(In|H| 4+ In(1/8))
€
2. If errory,q:n,(h) = 0 then with probability at least (1-0):

errortrue(h) < %(In |H|+1n(1/6))



Example: H is Conjunction of Boolean Literals

@+ In(1/6))
Consider classification problem f:X->Y: , %

* Instances: <X, X, X; X,> where each X, is boolean d.0)

» learned hypotheses are rules of the form: .03
- IF <X, X, X, )§4A>j =<(,?,1,?>, THEN Y=1, ELSE Y=0
— i.e., rules constrain any subset of the X

How m aining example ice to assure that with probability
at least|0.9, any consistent learner will output a hypothesis with true
error at most 0.057 1 2 -

H 134 \ { /
— > ‘}’{\/1 N>
lHl7 BV\ M Z °§ (-ol>




Example: H is Decision Tree wi =2

> %(m H| + In(1/6))

Consider classification problem f:X->Y:
* Instances: <X, ... X, where each X is boolean
* learned hypotheses are deC|S|on trees of depth 2, usmg

only two variables (,\/> i{ -

l’%,$:O¢) 4 wa/qL] CNNI)/
How many training examples m suffice to assure that with probability
at lead any consistent learner will output a hypothesis with true

error at mos
< M = D\, / (iN ?J\D + W(?,'T)>

2 |aN = q[\z
‘00{ M‘: 2’ /W\Zlol

%‘( N’//O, m> | b4




PAC Learning

Consider a class C' of possible target concepts
defined over a set of instances X of length n, and a

learner L using hypothesis space H.

Definition: C' is PAC-learnable by L using
H if for all ¢ € C, distributions D over X, €
such that 0 < € < 1/2, and ¢ such that
0<d<1/2,

learner L will with probability at least (1 — §)
output a hypothesis h € H such that
errorp(h) < €, in time that is polynomial in
1/e, 1/6, n and size(c).




PAC Learning

Consider a class C' of possible target concepts
defined over a set of instances X of length n, and a

learner L using hypothesis space H.

Definition: C is PAC-learnable by L using Sufficient condition:
H if for all ¢ € C, distributions D over X, € Holds if L requires

such that 0 < € < 1/2, and ¢ such that only a polynomial
0<d<1/2, number of training
learner L will with probability at least (1 4~ ) DL, Gt

‘ processing per
output a hypothesis h € H such that example is polynomial

errorp(h) < €, in time that is polynomial in
1/e, 1/, n and size(c).




Agnostic Learning

So far, assumed c € H

Agnostic learning setting: don’t assume ¢ € H

e What do we want then?

— The hypothesis h that makes fewest errors on

: training data
note ¢ here is

the difference e What is sample complexity in this case?

between the \
training error 1
and true error m 2> 2—62(111 |H| +1n(1/4))

derived from Hoeffding bounds:

Prlerrorp(h) > errorp(h) + €] < g~ 2me

/ /

true error  training error degree of overfitting



Additive Hoeffding Bounds — Agnostic Learning

Given m independent coin flips of coin with Pr(heads) = 6
bound the error in the maximum likelihood estimate 4

Pri0 > 04 ¢ < e 2me

Relevance to agnostic learning: for any single hypothesis h

2
Pr[erra"“true(h) > QTTOTtrain(h) + E] < 6_2m6

But we must consider all hypotheses in H
2
Pr((3h € H)erroriye(h) > erroriqgin(h)+e] < |H|e_2m6

So, with probability at least (1-8) every h satisfies

In|H|+ In%
2m

errortrue(h) < errortrain(h) + J



General Hoeffding Bounds

 When estimating parameter 0 inside [a,b] from m examples

_Dme2
P(10 - E[0]] > ¢) < 2¢(-)

 When estimating a probability 6 is inside [0,1], so
. 2
P(|6 — E[0]] > €) < 272%™

« And if we're interested in only one-sided error, then

P((E[A] — 0) > ¢) < e~ 2m€



