
EM Algorithm

Aarti Singh

Slides courtesy: Eric Xing, Carlos Guetrin

Machine Learning 10-701/15-781
Oct 27, 2010

K-means Recap …

S:

What is K-means optimizing?

=

K-means algorithm

K-means algorithm:

(1)

Exactly first step – assign each point to the
nearest cluster center

K-means algorithm

K-means algorithm:

(2)

Solution: average of points in cluster i
Exactly second step (re-center)

K-means algorithm

K-means algorithm: (coordinate descent on F)

(1)

(2)

Expectation step

Maximization step

Today, we will see a generalization of this approach:

EM algorithm

• K-means
– hard assignment: each object belongs to only one

cluster

• Mixture modeling
– soft assignment: probability that an object

belongs to a cluster

Generative approach

7

Partitioning Algorithms

Gaussian Mixture Model

Mixture of K Gaussians distributions: (Multi-modal distribution)

• There are k components

• Component i has an associated
mean vector mi

m1

m2

m3

Mixture of K Gaussians distributions: (Multi-modal distribution)

• There are k components

• Component i has an associated
mean vector mi

m1

m2

m3

m1

m2

m3

• Each component generates data
from a Gaussian with mean mi and
covariance matrix s2I

Each data point is generated according
to the following recipe:

Gaussian Mixture Model

Mixture of K Gaussians distributions: (Multi-modal distribution)

• There are k components

• Component i has an associated
mean vector mi m2m2

• Each component generates data
from a Gaussian with mean mi and
covariance matrix s2I

Each data point is generated according
to the following recipe:

1) Pick a component at random:
Choose component i with
probability P(y=i)

Gaussian Mixture Model

Mixture of K Gaussians distributions: (Multi-modal distribution)

• There are k components

• Component i has an associated
mean vector mi m2

• Each component generates data
from a Gaussian with mean mi and
covariance matrix s2I

Each data point is generated according
to the following recipe:

1) Pick a component at random:
Choose component i with
probability P(y=i)

2) Datapoint x ~ N(mi, s
2I)

m2

x

Gaussian Mixture Model

Mixture of K Gaussians distributions: (Multi-modal distribution)

m1

m2

m3

m1

m2

m3

p(x|y=i) ~ N(mi, s
2I)

p(x) = S p(x|y=i) P(y=i)
i

Mixture
proportion

Mixture
component

Mixture
component

Gaussian Mixture Model

Recall: Gaussian Bayes Classifier

Mixture of K Gaussians distributions: (Multi-modal distribution)

m1

m2

m3

m1

m2

m3

Gaussian Bayes Classifier:

)x|jy(P

)x|iy(P
log

=

=

xwT=

“Linear Decision boundary” – Recall that second-order terms cancel out

)jy(P)jy|x(p

)iy(P)iy|x(p
log

==

==
=

p(x|y=i) ~ N(mi, s
2I)

Depends on m1, m2, .. , mK, s
2 , P(y=1),…, P(Y=k)

MLE for GMM

Maximum Likelihood Estimate (MLE)
m2

m3

m1
argmax j=1 P(yj,xj)

But we don’t know yj’s!!!

Maximize marginal likelihood:

argmax j P(xj) = argmax j i=1 P(yj=i,xj)

= argmax j i P(yj=i)p(xj|yj=i)

= argmax j i=1P(yj=i)

m1, m2, .. , mK,s
2,

P(y=1),…, P(Y=k)

K

K











2

22

1
exp ijx m

s

K

m

K-means and GMM

“Linear” Decision Boundaries Assume data comes from a mixture
of K Gaussians distributions with
same variance

Hard assignment:

P(yj = i) = 1 if i = C(n)

= 0 otherwise

Same as K-means!!!

argmax j P(xj)
m1, m2, .. , mK,s

2,
P(y=1), …, P(y=k)


=


m

j

jCjx
1

2

)(minarg m
m1, .. , mK

C(1), …, C(m)

Maximize marginal likelihood:

(One) bad case for K-means

• Clusters may not be linearly separable

• Clusters may overlap

• Some clusters may be “wider” than others

General GMM

GMM – Gaussian Mixture Model (Multi-modal distribution)

m1

m2

m3

m1

m2

m3

• There are k components

• Component i has an associated
mean vector mi

• Each component generates data
from a Gaussian with mean mi and
covariance matrix Si

Each data point is generated according
to the following recipe:

1) Pick a component at random:
Choose component i with
probability P(y=i)

2) Datapoint x ~ N(mi, Si)

General GMM

GMM – Gaussian Mixture Model (Multi-modal distribution)

m1

m2

m3

m1

m2

m3

p(x|y=i) ~ N(mi, Si)

p(x) = S p(x|y=i) P(y=i)
i

Mixture
proportion

Mixture
component

General GMM

GMM – Gaussian Mixture Model (Multi-modal distribution)

m1

m2

m3

m1

m2

m3

p(x|y=i) ~ N(mi, Si)

Gaussian Bayes Classifier:

)x|jy(P

)x|iy(P
log

=

=

xwWxx TT =

“Quadratic Decision boundary” – second-order terms don’t cancel out

)jy(P)jy|x(p

)iy(P)iy|x(p
log

==

==
=

Depend on m1, m2, .. , mK, S1, S2, .. , SK, P(y=1),…, P(Y=k)

General GMM

Maximize marginal likelihood:

argmax j P(xj) = argmax j i=1 P(yj=i,xj)

= argmax j i=1 P(yj=i)p(xj|yj=i)

K

K


= =












==

m

j

k

i

iji

T

ij

i

xxiyP
1 1

)()(
2

1
exp

)det(

1
)(maxarg mm

Soft assignment: P(yj=i) = P(y=i)

How do we find the μi„s and P(y=i)s which give max. marginal likelihood?

* Set  log Prob (….) = 0 and solve for μi‘s. Non-linear non-analytically solvable
 μi

* Use gradient descent: Doable, but often slow

Expectation-Maximization (EM)

A general algorithm to deal with hidden data, but we will study it in
the context of unsupervised learning (hidden labels) first

• EM is an optimization strategy for objective functions that can be
interpreted as likelihoods in the presence of missing data.

• It is much simpler than gradient methods:
No need to choose step size.

• EM is an Iterative algorithm with two linked steps:
E-step: fill-in hidden values using inference
M-step: apply standard MLE/MAP method to completed data

• We will prove that this procedure monotonically improves the
likelihood (or leaves it unchanged). Thus it always converges to a
local optimum of the likelihood.

k

Expectation-Maximization (EM)

A simple case:

We have unlabeled data x1 x2 … xm

We know there are k classes

We know P(y=1), P(y=2) P(y=3) … P(y=K)

We don’t know μ1 μ2 .. μk

We know common variance s2

We can write P(data | μ1…. μk) ()

()

() ()

()





= =

= =

=

=









===

=

=

m

j

k

i

ij

m

j

k

i

ij

m

j

kj

km

iyx

iyiyx

x

xx

1 1

2

2

1 1

1

1

11

P
2

1
exp

P ,p

...p

......p

m
s

m

mm

mm

Independent data

Marginalize over class

Expectation (E) step

If we know m1,…,mk  easily compute prob. point xj belongs to

class y=i

() ()iyPx
2

1
exp...,xiyP

2

ij2k1j =







m

s
mm=

simply evaluate gaussian and normalize

For each point xj, j = 1, …, m

Equivalent to assigning clusters to each data point in K-means

Maximization (M) step

If we know prob. point xj belongs to class y=i

 MLE for mi is weighted average

imagine multiple copies of each xj, each with weight P(y=i|xj):



mi =

P y = i x j()
j=1

m

 x j

P y = i x j()
j=1

m



Equivalent to updating cluster centers in K-means

EM for spherical, same variance GMMs

E-step
Compute “expected” classes of all datapoints for each class

M-step

Compute Max. like μ given our data’s class membership distributions (weights)

() ()iyPx
2

1
exp...,xiyP

2

ij2k1j =







m

s
mm=



mi =

P y = i x j()
j=1

m

 x j

P y = i x j()
j=1

m



In K-means “E-step”
we do hard assignment

EM does soft assignment

Iterate.

Exactly same as MLE with
weighted data

EM for general GMMs

E-step
Compute “expected” classes of all datapoints for each class

M-step

Compute MLEs given our data’s class membership distributions (weights)

Just evaluate a
Gaussian at xj

Iterate. On iteration t let our estimates be

lt = { μ1
(t), μ2

(t) … μk
(t), S1

(t), S2
(t) … Sk

(t), p1
(t), p2

(t) … pk
(t) }

pi
(t) is shorthand for

estimate of P(y=i) on
t’th iteration

() ())()()(
,p,P

t

i

t

ij

t

itj xpxiy S= ml

()

()

()



=

=

=


j

tj

j

j

tj

t

i
xiy

xxiy

l

l

,P

 ,P

μ
1 ()

() ()() ()()

() ,xiyP

xx ,xiyP

j

tj

T1t

ij

1t

ij

j

tj

1t

i





l=

mml=

=S





()

m

xiy

p
j

tj

t

i

 =

=


l,P
)1(

m = #data points

EM for general GMMs: Example

m1

m2

m3
S1

S2 S3

P(y = |xj,m1,m2,m3,S1,S2,S3,p1,p2,p3)

After 1st iteration

After 2nd iteration

After 3rd iteration

After 4th iteration

After 5th iteration

After 6th iteration

After 20th iteration

GMM clustering of the assay data

Resulting
Density

Estimator

Three
classes of

assay
(each learned with

it’s own mixture
model)

Resulting
Bayes

Classifier

General EM algorithm

Marginal likelihood – x is observed, z is missing:

log

E step

x is observed, z is missing

Compute probability of missing data given current choice of 

()tj,xiyP E.g., l=

M step – Compute estimate of  by maximizing marginal

likelihood using Q(t+1)(z|xj)

Lower-bound on marginal likelihood

P(z) f(z)

Jensen’s inequality: log z P(z) f(z) ≥ z P(z) log f(z)

log: concave function

log(ax+(1-a)y) ≥ a log(x) + (1-a) log(y)

x yax+(1-a)y

Lower-bound on marginal likelihood

Jensen’s inequality: log z P(z) f(z) ≥ z P(z) log f(z)

≥

P(z) f(z)

Independent of 

Lower-bound on marginal likelihood

≥

Independent of 

Expected log likelihood wrt Q

Since z is missing, instead take expectation over it (recall:
probability of missing data z computed in E-step)

=

M step

Maximize lower bound on marginal likelihood

Use expected counts instead of counts when computing MLE:
If learning requires Count(x,z), Use EQ(t+1)[Count(x,z)]

≥

Expected log likelihood wrt Q(t+1)

EM as Coordinate Ascent

M-step maximizes lower bound F on marginal likelihood => doesn‟t
decrease the marginal likelihood

M-step: Fix Q, maximize F over 

E-step: Fix , maximize F over Q

We‟ll show this next. Thus,

E-step also maximizes lower bound F on marginal likelihood => doesn‟t
decrease the marginal likelihood

Since marginal likelihood is bounded, Convergence follows!

Convergence of EM

E-step: Fix , maximize F over Q

1

KL divergence between two distributions

Convergence of EM

E-step: Fix , maximize F over Q

KL>=0, Maximized if KL divergence = 0 KL(Q,P) = 0 iif Q = P

Recall E-step:

+

Thus, E-step also maximizes lower bound F on marginal likelihood =>
doesn‟t decrease the marginal likelihood

Convergence of EM

Maximizes lower bound F on marginal likelihood

M-step: Fix Q, maximize F over 

E-step: Fix , maximize F over Q

Re-aligns F with marginal likelihood

Convergence of EM

Likelihood function

Sequence of EM lower bound F-functions

EM monotonically converges to a local maximum of likelihood !

F

Convergence of EM

Typical likelihood function

Different sequence of EM lower bound
F-functions depending on initialization

Use multiple, randomized initializations in practice

Summary: EM Algorithm

• A way of maximizing likelihood function for hidden variable models. Finds
MLE of parameters when the original (hard) problem can be broken up
into two (easy) pieces:
1. Estimate some “missing” or “unobserved” data from observed data and current

parameters.
2. Using this “complete” data, find the maximum likelihood parameter estimates.

• Alternate between filling in the latent variables using the best guess
(posterior) and updating the parameters based on this guess:

1. E-step:

2. M-step:

• In the M-step we optimize a lower bound on the likelihood. In the E-step
we close the gap, making bound=likelihood.

• EM performs coordinate ascent on F, can get stuck in local minima.

• BUT Extremely popular in practice.

)Q,(FmaxargQ t

Q

1t =

)Q,(Fmaxarg 1t1t 



 =

