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K-means Recap …

S:



What is K-means optimizing?

=



K-means algorithm

K-means algorithm:

(1)

Exactly first step – assign each point to the 
nearest cluster center 



K-means algorithm

K-means algorithm:

(2)

Solution: average of points in cluster i
Exactly second step (re-center)



K-means algorithm

K-means algorithm: (coordinate descent on F)

(1)

(2)

Expectation step

Maximization step

Today, we will see a generalization of this approach:

EM algorithm



• K-means 
– hard assignment: each object belongs to only one 

cluster

• Mixture modeling
– soft assignment: probability that an object 

belongs to a cluster

Generative approach

7

Partitioning Algorithms



Gaussian Mixture Model

Mixture of K Gaussians distributions:  (Multi-modal distribution)

• There are k components

• Component i has an associated 
mean vector mi

m1

m2

m3



Mixture of K Gaussians distributions:  (Multi-modal distribution)

• There are k components

• Component i has an associated 
mean vector mi

m1

m2

m3

m1

m2

m3

• Each component generates data 
from a Gaussian with mean mi and 
covariance matrix s2I

Each data point is generated according 
to the following recipe: 

Gaussian Mixture Model



Mixture of K Gaussians distributions:  (Multi-modal distribution)

• There are k components

• Component i has an associated 
mean vector mi m2m2

• Each component generates data 
from a Gaussian with mean mi and 
covariance matrix s2I

Each data point is generated according 
to the following recipe: 

1) Pick a component at random: 
Choose component i with 
probability P(y=i)

Gaussian Mixture Model



Mixture of K Gaussians distributions:  (Multi-modal distribution)

• There are k components

• Component i has an associated 
mean vector mi m2

• Each component generates data 
from a Gaussian with mean mi and 
covariance matrix s2I

Each data point is generated according 
to the following recipe: 

1) Pick a component at random: 
Choose component i with 
probability P(y=i)

2) Datapoint x ~ N(mi, s
2I )

m2

x

Gaussian Mixture Model



Mixture of K Gaussians distributions:  (Multi-modal distribution)

m1

m2

m3

m1

m2

m3

p(x|y=i) ~ N(mi, s
2I )

p(x) = S p(x|y=i) P(y=i)
i

Mixture
proportion

Mixture
component

Mixture
component

Gaussian Mixture Model



Recall: Gaussian Bayes Classifier

Mixture of K Gaussians distributions:  (Multi-modal distribution)

m1

m2

m3

m1

m2

m3

Gaussian Bayes Classifier:
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“Linear Decision boundary” – Recall that second-order terms cancel out
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p(x|y=i) ~ N(mi, s
2I )

Depends on m1, m2, .. , mK, s
2 , P(y=1),…, P(Y=k)



MLE for GMM

Maximum Likelihood Estimate (MLE)
m2

m3

m1
argmax j=1 P(yj,xj)

But we don’t know yj’s!!!

Maximize marginal likelihood:

argmax j P(xj) = argmax j i=1 P(yj=i,xj)

= argmax j i P(yj=i)p(xj|yj=i)

= argmax j i=1P(yj=i)

m1, m2, .. , mK,s
2, 

P(y=1),…, P(Y=k)
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K-means and GMM

“Linear” Decision Boundaries Assume data comes from a mixture 
of K Gaussians distributions with 
same variance

Hard assignment:

P(yj = i) = 1 if    i = C(n)

= 0          otherwise

Same as K-means!!!

argmax j P(xj) 
m1, m2, .. , mK,s

2, 
P(y=1), …, P(y=k)
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Maximize marginal likelihood: 



(One) bad case for K-means

• Clusters may not be linearly separable

• Clusters may overlap

• Some clusters may be “wider” than others



General GMM

GMM – Gaussian Mixture Model  (Multi-modal distribution)

m1

m2

m3

m1

m2

m3

• There are k components

• Component i has an associated 
mean vector mi

• Each component generates data 
from a Gaussian with mean mi and 
covariance matrix Si

Each data point is generated according 
to the following recipe: 

1) Pick a component at random: 
Choose component i with 
probability P(y=i)

2) Datapoint x ~ N(mi, Si)



General GMM

GMM – Gaussian Mixture Model  (Multi-modal distribution)

m1

m2

m3

m1

m2

m3

p(x|y=i) ~ N(mi, Si)

p(x) = S p(x|y=i) P(y=i)
i

Mixture
proportion

Mixture
component



General GMM

GMM – Gaussian Mixture Model  (Multi-modal distribution)

m1

m2

m3

m1

m2

m3

p(x|y=i) ~ N(mi, Si)

Gaussian Bayes Classifier:
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“Quadratic Decision boundary” – second-order terms don’t cancel out
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Depend on m1, m2, .. , mK, S1, S2, .. , SK, P(y=1),…, P(Y=k)



General GMM

Maximize marginal likelihood:

argmax j P(xj) = argmax j i=1 P(yj=i,xj)

= argmax j i=1 P(yj=i)p(xj|yj=i)
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Soft assignment: P(yj=i) = P(y=i) 

How do we find the μi„s and P(y=i)s which give max. marginal likelihood?

* Set   log Prob (….) = 0 and solve for μi‘s. Non-linear non-analytically solvable
 μi

* Use gradient descent: Doable, but often slow



Expectation-Maximization (EM)

A general algorithm to deal with hidden data, but we will study it in 
the context of unsupervised learning (hidden labels) first

• EM is an optimization strategy for objective functions that can be 
interpreted as likelihoods in the presence of missing data.

• It is much simpler than gradient methods:
No need to choose step size.

• EM is an Iterative algorithm with two linked steps:
E-step: fill-in hidden values using inference
M-step: apply standard MLE/MAP method to completed data

• We will prove that this procedure monotonically improves the 
likelihood (or leaves it unchanged). Thus it always converges to a 
local optimum of the likelihood.

k



Expectation-Maximization (EM)

A simple case:

We have unlabeled data x1 x2 … xm

We know there are k classes

We know P(y=1), P(y=2) P(y=3) … P(y=K)

We don’t know μ1 μ2 .. μk

We know common variance s2

We can write P( data | μ1…. μk) ( )
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Independent data

Marginalize over class



Expectation (E) step

If we know m1,…,mk       easily compute prob. point xj belongs to 

class y=i
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simply evaluate gaussian and normalize

For each point xj, j = 1, …, m

Equivalent to assigning clusters to each data point in K-means



Maximization (M) step

If we know prob. point xj belongs to class y=i

 MLE for mi is weighted average

imagine multiple copies of each xj, each with weight P(y=i|xj):

 

mi =  

P y = i x j( )
j=1

m

 x j

P y = i x j( )
j=1

m



Equivalent to updating cluster centers in K-means



EM for spherical, same variance GMMs

E-step
Compute “expected” classes of all datapoints for each class

M-step

Compute Max. like μ given our data’s class membership distributions (weights)
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mi =  

P y = i x j( )
j=1

m

 x j

P y = i x j( )
j=1

m



In K-means “E-step”
we do hard assignment

EM does soft assignment

Iterate.

Exactly same as MLE with 
weighted data



EM for general GMMs

E-step
Compute “expected” classes of all datapoints for each class

M-step

Compute MLEs given our data’s class membership distributions (weights)

Just evaluate a 
Gaussian at xj

Iterate.  On iteration t let our estimates be

lt = { μ1
(t), μ2

(t) … μk
(t), S1

(t), S2
(t) … Sk

(t), p1
(t), p2

(t) … pk
(t) }        

pi
(t) is shorthand for 

estimate of P(y=i) on 
t’th iteration
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EM for general GMMs: Example

m1

m2

m3
S1

S2 S3

P(y =  |xj,m1,m2,m3,S1,S2,S3,p1,p2,p3)



After 1st iteration



After 2nd iteration



After 3rd iteration



After 4th iteration



After 5th iteration



After 6th iteration



After 20th iteration



GMM clustering of the assay data



Resulting 
Density 

Estimator



Three 
classes of 

assay
(each learned with 

it’s own mixture 
model)



Resulting 
Bayes

Classifier



General EM algorithm

Marginal likelihood – x is observed, z is missing:

log



E step

x is observed, z is missing

Compute probability of missing data given current choice of 

( )tj,xiyP E.g., l=

M step – Compute estimate of  by maximizing marginal 

likelihood using Q(t+1)(z|xj)



Lower-bound on marginal likelihood

P(z) f(z)

Jensen’s inequality: log z P(z) f(z)  ≥  z P(z) log f(z)

log: concave function

log(ax+(1-a)y)   ≥   a log(x) + (1-a) log(y)

x yax+(1-a)y



Lower-bound on marginal likelihood

Jensen’s inequality: log z P(z) f(z)  ≥  z P(z) log f(z)

≥

P(z) f(z)

Independent of 



Lower-bound on marginal likelihood

≥

Independent of 

Expected log likelihood wrt Q

Since z is missing, instead take expectation over it (recall: 
probability of missing data z computed in E-step)

=



M step

Maximize lower bound on marginal likelihood

Use expected counts instead of counts when computing MLE:
If learning requires Count(x,z), Use EQ(t+1)[Count(x,z)]

≥

Expected log likelihood wrt Q(t+1)



EM as Coordinate Ascent

M-step maximizes lower bound F on marginal likelihood => doesn‟t 
decrease the marginal likelihood

M-step: Fix Q, maximize F over 

E-step: Fix , maximize F over Q

We‟ll show this next. Thus, 

E-step also maximizes lower bound F on marginal likelihood => doesn‟t 
decrease the marginal likelihood

Since marginal likelihood is bounded, Convergence follows!



Convergence of EM

E-step: Fix , maximize F over Q

1

KL divergence between two distributions



Convergence of EM

E-step: Fix , maximize F over Q

KL>=0, Maximized if KL divergence = 0 KL(Q,P) = 0 iif Q = P

Recall E-step:

+

Thus, E-step also maximizes lower bound F on marginal likelihood => 
doesn‟t decrease the marginal likelihood



Convergence of EM

Maximizes lower bound F on marginal likelihood

M-step: Fix Q, maximize F over 

E-step: Fix , maximize F over Q

Re-aligns F with marginal likelihood



Convergence of EM

Likelihood function

Sequence of EM lower bound F-functions

EM monotonically converges to a local maximum of likelihood !

F



Convergence of EM

Typical likelihood function

Different sequence of EM lower bound 
F-functions depending on initialization

Use multiple, randomized initializations in practice



Summary: EM Algorithm

• A way of maximizing likelihood function for hidden variable models. Finds 
MLE of parameters when the original (hard) problem can be broken up 
into two (easy) pieces:
1. Estimate some “missing” or “unobserved” data from observed data and current 

parameters.
2. Using this “complete” data, find the maximum likelihood parameter estimates.

• Alternate between filling in the latent variables using the best guess 
(posterior) and updating the parameters based on this guess:

1. E-step: 

2. M-step: 

• In the M-step we optimize a lower bound on the likelihood. In the E-step 
we close the gap, making bound=likelihood.

• EM performs coordinate ascent on F, can get stuck in local minima.

• BUT Extremely popular in practice.
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