EM Algorithm

Aarti Singh

Slides courtesy: Eric Xing, Carlos Guetrin

Machine Learning 10-701/15-781 Oct 27, 2010

K-means Recap ...

Randomly initialize k centers

$$\square$$
 $\mu^{(0)} = \mu_1^{(0)}, \dots, \mu_k^{(0)}$

Classify: Assign each point j∈{1,...m} to nearest center:

$$\Box C^{(t)}(j) \leftarrow \arg\min_{i=1,\dots,k} \|\mu_i^{(t)} - x_j\|^2$$

• Recenter: μ_i becomes centroid of its points:

$$\square \ \mu_i^{(t+1)} \leftarrow \arg\min_{\mu} \sum_{j:C^{(t)}(j)=i} \|\mu - x_j\|^2 \qquad i \in \{1, \dots, k\}$$

 \square Equivalent to $\mu_i \leftarrow$ average of its points!

What is K-means optimizing?

• Potential function $F(\mu,C)$ of centers μ and point allocations C:

$$F(\mu, C) = \sum_{j=1}^{m} ||\mu_{C(j)} - x_j||^2$$

$$= \sum_{i=1}^{k} \sum_{j:C(j)=i} ||\mu_i - x_j||^2$$

- Optimal K-means:
 - \square min_{μ}min_C F(μ ,C)

K-means algorithm

Optimize potential function:

$$\min_{\mu} \min_{C} F(\mu, C) = \min_{\mu} \min_{C} \sum_{i=1}^{k} \sum_{j:C(j)=i} ||\mu_{i} - x_{j}||^{2}$$

$$= \min_{\mu} \min_{C} \sum_{j=1}^{m} ||\mu_{C(j)} - x_{j}||^{2}$$

- K-means algorithm:
 - (1) Fix μ, optimize C

$$\min_{C(1),C(2),...,C(m)} \sum_{j=1}^{m} \|\mu_{C(j)} - x_j\|^2 = \sum_{j=1}^{m} \min_{C(j)} \|\mu_{C(j)} - x_j\|^2$$

Exactly first step – assign each point to the nearest cluster center

K-means algorithm

Optimize potential function:

$$\min_{\mu} \min_{C} F(\mu, C) = \min_{\mu} \min_{C} \sum_{i=1}^{k} \sum_{j:C(j)=i} ||\mu_{i} - x_{j}||^{2}$$

$$= \min_{\mu} \min_{C} \sum_{j=1}^{m} ||\mu_{C(j)} - x_{j}||^{2}$$

- K-means algorithm:
 - (2) Fix C, optimize μ

$$\min_{\mu_1, \mu_2, \dots \mu_K} \sum_{i=1}^K \sum_{j: C(j)=i} \|\mu_i - x_j\|^2 = \sum_{i=1}^K \min_{\mu_i} \sum_{j: C(j)=i} \|\mu_i - x_j\|^2$$

Solution: average of points in cluster i Exactly second step (re-center)

K-means algorithm

Optimize potential function:

$$\min_{\mu} \min_{C} F(\mu, C) = \min_{\mu} \min_{C} \sum_{i=1}^{k} \sum_{j:C(j)=i} ||\mu_{i} - x_{j}||^{2}$$

K-means algorithm: (coordinate descent on F)

(1) Fix μ , optimize C Exp

Expectation step

(2) Fix C, optimize μ

Maximization step

Today, we will see a generalization of this approach:

EM algorithm

Partitioning Algorithms

- K-means
 - hard assignment: each object belongs to only one cluster

- Mixture modeling
 - soft assignment: probability that an object belongs to a cluster

Generative approach

Mixture of K Gaussians distributions: (Multi-modal distribution)

- There are k components
- Component i has an associated mean vector μ_i

Mixture of K Gaussians distributions: (Multi-modal distribution)

- There are k components
- Component i has an associated mean vector μ_i
- Each component generates data from a Gaussian with mean μ_i and covariance matrix $\sigma^2 I$

Each data point is generated according to the following recipe:

Mixture of K Gaussians distributions: (Multi-modal distribution)

- There are k components
- Component i has an associated mean vector μ_i
- Each component generates data from a Gaussian with mean μ_i and covariance matrix $\sigma^2 I$

Each data point is generated according to the following recipe:

 Pick a component at random: Choose component i with probability P(y=i)

Mixture of K Gaussians distributions: (Multi-modal distribution)

- There are k components
- Component i has an associated mean vector μ_i
- Each component generates data from a Gaussian with mean μ_i and covariance matrix $\sigma^2 I$

Each data point is generated according to the following recipe:

- Pick a component at random: Choose component i with probability P(y=i)
- 2) Datapoint $\mathbf{x} \sim \mathbf{N}(\mu_i, \sigma^2 \mathbf{I})$

Mixture of K Gaussians distributions: (Multi-modal distribution)

$$p(x|y=i) \sim N(\mu_i, \sigma^2 I)$$

$$p(x) = \sum_i p(x|y=i) P(y=i)$$

$$\downarrow \qquad \qquad \downarrow$$
Mixture
$$component \qquad proportion$$

Recall: Gaussian Bayes Classifier

Mixture of K Gaussians distributions: (Multi-modal distribution)

$$p(x|y=i) \sim N(\mu_i, \sigma^2 I)$$

Gaussian Bayes Classifier:

$$\log \frac{P(y=i \mid x)}{P(y=j \mid x)}$$

$$= \log \frac{p(x \mid y=i)P(y=i)}{p(x \mid y=j)P(y=j)}$$

$$= \mathbf{w}^{T} x$$

"Linear Decision boundary" - Recall that second-order terms cancel out

MLE for GMM

Maximum Likelihood Estimate (MLE)

$$\underset{\mu_1, \mu_2, \dots, \mu_k, \sigma^2,}{\operatorname{argmax}} \prod_{j=1}^{m} P(y_j, x_j)$$

$$\underset{P(y=1), \dots, P(Y=k)}{\mu_1, \mu_2, \dots, \mu_k, \sigma^2}$$

$$\operatorname{argmax} \prod_{j} P(x_{j}) = \operatorname{argmax} \prod_{j} \sum_{i=1}^{K} P(y_{j}=i,x_{j})$$

= argmax
$$\prod_{j} \sum_{i}^{K} P(y_j=i) p(x_j | y_j=i)$$

= argmax
$$\prod_{j} \sum_{i=1}^{K} P(y_j = i) \exp \left[-\frac{1}{2\sigma^2} ||x_j - \mu_i||^2 \right]$$

K-means and GMM

"Linear" Decision Boundaries

Assume data comes from a mixture of K Gaussians distributions with same variance

Hard assignment:

$$P(y_j = i) = 1$$
 if $i = C(n)$
= 0 otherwise

Maximize marginal likelihood:

$$\underset{\mu_{1}, \mu_{2}, \dots, \mu_{K}, \sigma^{2}, \\ P(y=1), \dots, P(y=k) }{\operatorname{arg \, min}} \sum_{j=1}^{m} \left\| x_{j} - \mu_{C(j)} \right\|^{2}$$

Same as K-means!!!

(One) bad case for K-means

- Clusters may not be linearly separable
- Clusters may overlap
- Some clusters may be "wider" than others

GMM - Gaussian Mixture Model (Multi-modal distribution)

- There are k components
- Component i has an associated mean vector μ_i
- Each component generates data from a Gaussian with mean μ_i and covariance matrix Σ_i

Each data point is generated according to the following recipe:

- 1) Pick a component at random: Choose component i with probability P(y=i)
- 2) Datapoint $x \sim N(\mu_i, \Sigma_i)$

GMM – Gaussian Mixture Model (Multi-modal distribution)

$$p(x|y=i) \sim N(\mu_i, \Sigma_i)$$

$$p(x) = \sum_i p(x|y=i) P(y=i)$$

$$\downarrow \qquad \qquad \downarrow$$
Mixture
$$component \qquad proportion$$

GMM - Gaussian Mixture Model (Multi-modal distribution)

$$p(x|y=i) \sim N(\mu_i, \Sigma_i)$$

Gaussian Bayes Classifier:

$$\log \frac{P(y=i \mid x)}{P(y=j \mid x)}$$

$$= \log \frac{p(x \mid y=i)P(y=i)}{p(x \mid y=j)P(y=j)}$$

$$= x^{T} \widehat{W} x + \widehat{w}^{T} x$$

→ Depend on $\mu_1, \mu_2, ..., \mu_K, \Sigma_1, \Sigma_2, ..., \Sigma_K$, P(y=1),..., P(Y=k)

"Quadratic Decision boundary" – second-order terms don't cancel out

Maximize marginal likelihood:

$$\underset{\text{argmax }\prod_{j} \sum_{i=1}^{K} P(y_{j}=i,x_{j})}{\text{argmax }\prod_{j} \sum_{i=1}^{K} P(y_{j}=i,x_{j})}$$

$$= \underset{\text{argmax }\prod_{j} \sum_{i=1}^{K} P(y_{j}=i)p(x_{j}|y_{j}=i)}{\text{product}}$$

Soft assignment: $P(y_i=i) = P(y=i)$

$$= \arg \max \prod_{j=1}^{m} \sum_{i=1}^{k} P(y=i) \frac{1}{\sqrt{\det(\sum_{i})}} \exp \left[-\frac{1}{2} (x_{j} - \mu_{i})^{T} \sum_{i} (x_{j} - \mu_{i}) \right]$$

How do we find the μ_i 's and P(y=i)s which give max. marginal likelihood?

- * Set $\underline{\partial}$ log Prob (....) = 0 and solve for μ_i 's. Non-linear non-analytically solvable $\partial \mu_i$
- * Use gradient descent: Doable, but often slow

Expectation-Maximization (EM)

A general algorithm to deal with hidden data, but we will study it in the context of unsupervised learning (hidden labels) first

- EM is an optimization strategy for objective functions that can be interpreted as likelihoods in the presence of missing data.
- It is much simpler than gradient methods:
 No need to choose step size.
- EM is an Iterative algorithm with two linked steps:

E-step: fill-in hidden values using inference

M-step: apply standard MLE/MAP method to completed data

• We will prove that this procedure monotonically improves the likelihood (or leaves it unchanged). Thus it always converges to a local optimum of the likelihood.

Expectation-Maximization (EM)

A simple case:

We have unlabeled data $\mathbf{x}_1 \mathbf{x}_2 \dots \mathbf{x}_m$

We know there are k classes

We know P(y=1), P(y=2) P(y=3) ... P(y=K)

We don't know $\mu_1 \mu_2 ... \mu_k$

We know common variance σ^2

We can write P(data |
$$\mu_1$$
.... μ_k) = $p(x_1...x_m|\mu_1...\mu_k)$
= $\prod_{j=1}^m p(x_j|\mu_1...\mu_k)$ Independent data
= $\prod_{j=1}^m \sum_{i=1}^k p(x_j|y=i,\mu_i) P(y=i)$ Marginalize over class
 $\propto \prod_{j=1}^m \sum_{i=1}^k \exp\left(-\frac{1}{2\sigma^2} \|x_j - \mu_i\|^2\right) P(y=i)$

Expectation (E) step

If we know $\mu_1,...,\mu_k \to \text{easily compute prob. point } x_j \text{ belongs to }$ class y=i

For each point x_i , j = 1, ..., m

$$P(y = i | x_j, \mu_1...\mu_k) \propto exp(-\frac{1}{2\sigma^2} ||x_j - \mu_i||^2) P(y = i)$$

simply evaluate gaussian and normalize

Equivalent to assigning clusters to each data point in K-means

Maximization (M) step

If we know prob. point x_j belongs to class y=i

 \rightarrow MLE for μ_i is weighted average

imagine multiple copies of each x_j , each with weight $P(y=i|x_j)$:

$$\mu_{i} = \frac{\sum_{j=1}^{m} P(y=i|x_{j})x_{j}}{\sum_{j=1}^{m} P(y=i|x_{j})}$$

Equivalent to updating cluster centers in K-means

EM for spherical, same variance GMMs

E-step

Compute "expected" classes of all datapoints for each class

$$P(y=i|x_j,\mu_1...\mu_k) \propto \exp\left(-\frac{1}{2\sigma^2} \|x_j-\mu_i\|^2\right) P(y=i)$$
In K-means "E-step" we do hard assignment

In K-means "E-step"

EM does soft assignment

M-step

Compute Max. like μ given our data's class membership distributions (weights)

$$\mu_{i} = \frac{\sum_{j=1}^{m} P(y=i|x_{j})x_{j}}{\sum_{j=1}^{m} P(y=i|x_{j})}$$

Exactly same as MLE with weighted data

Iterate.

EM for general GMMs

Iterate. On iteration t let our estimates be

$$\lambda_t = \{ \, \mu_1^{(t)}, \, \mu_2^{(t)} \ldots \, \mu_k^{(t)}, \, \Sigma_1^{(t)}, \, \Sigma_2^{(t)} \ldots \, \Sigma_k^{(t)}, \, \rho_1^{(t)}, \, \rho_2^{(t)} \ldots \, \rho_k^{(t)} \, \}$$

 $p_i^{(t)}$ is shorthand for estimate of P(y=i) on t'th iteration

E-step

Compute "expected" classes of all datapoints for each class

$$P(y = i | x_j, \lambda_t) \propto p_i^{(t)} p(x_j | \mu_i^{(t)}, \Sigma_i^{(t)}) -$$

Just evaluate a Gaussian at x_i

M-step

Compute MLEs given our data's class membership distributions (weights)

$$\mu_{i}^{(t+1)} = \frac{\sum_{j} P(y = i | x_{j}, \lambda_{t}) x_{j}}{\sum_{j} P(y = i | x_{j}, \lambda_{t})} \qquad \sum_{i} \frac{\sum_{j} P(y = i | x_{j}, \lambda_{t}) (x_{j} - \mu_{i}^{(t+1)})^{T}}{\sum_{j} P(y = i | x_{j}, \lambda_{t})}$$

$$p_{i}^{(t+1)} = \frac{\sum_{j} P(y = i | x_{j}, \lambda_{t})}{m} \qquad m = \text{\#data points}$$

EM for general GMMs: Example

After 1st iteration

After 2nd iteration

After 3rd iteration

After 4th iteration

After 5th iteration

After 6th iteration

After 20th iteration

GMM clustering of the assay data

Resulting Density Estimator

Three classes of assay

(each learned with it's own mixture model)

Resulting Bayes Classifier

General EM algorithm

Marginal likelihood – \mathbf{x} is observed, \mathbf{z} is missing:

$$\log \mathbf{P}(\mathbf{D}; \theta) = \log \prod_{j=1}^{m} P(\mathbf{x}_{j} | \theta) \qquad \mathbf{D} = \{\mathbf{x}_{j}\}_{j=1}^{m}$$

$$= \sum_{j=1}^{m} \log P(\mathbf{x}_{j} | \theta)$$

$$= \sum_{j=1}^{m} \log \sum_{\mathbf{z}} P(\mathbf{x}_{j}, \mathbf{z} | \theta)$$

E step

x is observed, z is missing

Compute probability of missing data given current choice of θ

$$Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}_j) = P(\mathbf{z} \mid \mathbf{x}_j, \theta^{(t)})$$

E.g.,
$$P(y = i | x_j, \lambda_t)$$

M step – Compute estimate of θ by maximizing marginal likelihood using $Q^{(t+1)}(\mathbf{z} | \mathbf{x}_i)$

Lower-bound on marginal likelihood

Jensen's inequality: $\log \sum_{z} P(z) f(z) \ge \sum_{z} P(z) \log f(z)$

log: concave function

$$log(ax+(1-a)y) \ge a log(x) + (1-a) log(y)$$

Lower-bound on marginal likelihood

Jensen's inequality: $\log \sum_{z} P(z) f(z) \ge \sum_{z} P(z) \log f(z)$

$$\geq \sum_{j=1}^{m} \sum_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}_{j}) \log \frac{P(\mathbf{z}, \mathbf{x}_{j} \mid \theta)}{Q(\mathbf{z} \mid \mathbf{x}_{j})}$$

$$= \sum_{j=1}^{m} \sum_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}_{j}) \log P(\mathbf{z}, \mathbf{x}_{j} \mid \theta) + \underline{m.H(Q)}$$
Independent of θ

Lower-bound on marginal likelihood

$$P(D; \theta) \geq \sum_{j=1}^{m} \sum_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}_{j}) \log P(\mathbf{z}, \mathbf{x}_{j} \mid \theta) + \underline{m.H(Q)}$$

$$\sum_{\mathbf{z}} \sum_{j=1}^{m} \log P(\mathbf{z}, \mathbf{x}_{j} \mid \theta) Q(\mathbf{z} \mid \mathbf{x}_{j})$$

$$\text{Expected log likelihood wrt Q}$$

Since **z** is missing, instead take expectation over it (recall: probability of missing data **z** computed in E-step)

M step

$$P(D; \theta) \ge \sum_{\mathbf{z}} \sum_{j=1}^{m} \log P(\mathbf{z}, \mathbf{x}_j \mid \theta) Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}_j) + m.H(Q)$$

Maximize lower bound on marginal likelihood

$$\theta^{(t+1)} \leftarrow \arg\max_{\theta} \sum_{\mathbf{z}} \sum_{j=1}^{m} \log P(\mathbf{z}, \mathbf{x}_j \mid \theta) Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}_j)$$

Expected log likelihood wrt Q(t+1)

Use expected counts instead of counts when computing MLE: If learning requires Count(\mathbf{x},\mathbf{z}), Use $E_{Q(t+1)}[Count(\mathbf{x},\mathbf{z})]$

EM as Coordinate Ascent

$$P(D;\theta) \geq F(\theta,Q)$$

M-step: Fix Q, maximize F over θ

$$\mathbf{P}(\mathbf{D}; \boldsymbol{\theta}) \geq F(\boldsymbol{\theta}, Q^{(t)}) = \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t)}(\mathbf{z} \mid \mathbf{x}_j) \log P(\mathbf{z}, \mathbf{x}_j \mid \boldsymbol{\theta}) + m.H(Q^{(t)})$$

M-step maximizes lower bound F on marginal likelihood => doesn't decrease the marginal likelihood

E-step: Fix θ , maximize F over Q

We'll show this next. Thus,

E-step also maximizes lower bound F on marginal likelihood => doesn't decrease the marginal likelihood

Since marginal likelihood is bounded, Convergence follows!

$$P(D;\theta) \geq F(\theta,Q)$$

E-step: Fix θ , maximize F over Q

$$P(D; \theta^{(t)}) \geq F(\theta^{(t)}, Q) = \sum_{j=1}^{m} \sum_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}_{j}) \log \frac{P(\mathbf{z}, \mathbf{x}_{j} \mid \theta^{(t)})}{Q(\mathbf{z} \mid \mathbf{x}_{j})}$$

$$= \sum_{j=1}^{m} \sum_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}_{j}) \log \frac{P(\mathbf{z} \mid \mathbf{x}_{j}, \theta^{(t)}) P(\mathbf{x}_{j} \mid \theta^{(t)})}{Q(\mathbf{z} \mid \mathbf{x}_{j})}$$

$$= \sum_{j=1}^{m} \sum_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}_{j}) \log \frac{P(\mathbf{z} \mid \mathbf{x}_{j}, \theta^{(t)})}{Q(\mathbf{z} \mid \mathbf{x}_{j})} + \sum_{j=1}^{m} \sum_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}_{j}) \log P(\mathbf{x}_{j} \mid \theta^{(t)})$$

$$-KL(Q(\mathbf{z} \mid \mathbf{x}_{j}), P(\mathbf{z} \mid \mathbf{x}_{j}, \theta^{(t)}))$$

$$P(D; \theta^{(t)})$$

KL divergence between two distributions

$$P(D;\theta) \geq F(\theta,Q)$$

E-step: Fix θ , maximize F over Q

$$\mathbf{P}(\mathbf{D}; \boldsymbol{\theta}^{(t)}) \geq F(\boldsymbol{\theta}^{(t)}, Q) = \sum_{j=1}^{m} \sum_{\mathbf{z}} Q(\mathbf{z} \mid \mathbf{x}_j) \log \frac{P(\mathbf{z}, \mathbf{x}_j \mid \boldsymbol{\theta}^{(t)})}{Q(\mathbf{z} \mid \mathbf{x}_j)}$$

$$= \sum_{j=1}^{m} -KL(Q(\mathbf{z} | \mathbf{x}_j), P(\mathbf{z} | \mathbf{x}_j, \boldsymbol{\theta}^{(t)})) + \mathbf{P}(\mathbf{D}; \boldsymbol{\theta}^{(t)})$$

KL>=0, Maximized if KL divergence = 0 KL(Q,P) = 0 iif Q = P

Recall E-step: $Q^{(t+1)}(\mathbf{z} \mid \mathbf{x}_j) = P(\mathbf{z} \mid \mathbf{x}_j, \theta^{(t)})$

Thus, E-step also maximizes lower bound F on marginal likelihood => doesn't decrease the marginal likelihood

$$P(D;\theta) \geq F(\theta,Q)$$

M-step: Fix Q, maximize F over θ

$$\mathbf{P}(\mathbf{D}; \boldsymbol{\theta}) \geq F(\boldsymbol{\theta}, Q^{(t)}) = \sum_{j=1}^{m} \sum_{\mathbf{z}} Q^{(t)}(\mathbf{z} \mid \mathbf{x}_j) \log P(\mathbf{z}, \mathbf{x}_j \mid \boldsymbol{\theta}) + m.H(Q^{(t)})$$

Maximizes lower bound F on marginal likelihood

E-step: Fix θ , maximize F over Q

$$\mathbf{P}(\mathbf{D}; \boldsymbol{\theta}^{(t)}) \ge F(\boldsymbol{\theta}^{(t)}, Q) = \mathbf{P}(\mathbf{D}; \boldsymbol{\theta}^{(t)}) - \sum_{j=1}^{m} KL\left(Q(\mathbf{z} \mid \mathbf{x}_j) || P(\mathbf{z} \mid \mathbf{x}_j, \boldsymbol{\theta}^{(t)})\right)$$

Re-aligns F with marginal likelihood

$$F(\theta^{(t)}, Q^{(t+1)}) = P(D; \theta^{(t)})$$

Sequence of EM lower bound *F*-functions

EM monotonically converges to a local maximum of likelihood!

Different sequence of EM lower bound F-functions depending on initialization

Use multiple, randomized initializations in practice

Summary: EM Algorithm

- A way of maximizing likelihood function for hidden variable models. Finds MLE of parameters when the original (hard) problem can be broken up into two (easy) pieces:
 - 1. Estimate some "missing" or "unobserved" data from observed data and current parameters.
 - 2. Using this "complete" data, find the maximum likelihood parameter estimates.
- Alternate between filling in the latent variables using the best guess (posterior) and updating the parameters based on this guess:

```
1. E-step: Q^{t+1} = \arg\max_{Q} F(\theta^t, Q)
2. M-step: \theta^{t+1} = \arg\max_{Q} F(\theta, Q^{t+1})
```

- In the M-step we optimize a lower bound on the likelihood. In the E-step we close the gap, making bound=likelihood.
- EM performs coordinate ascent on F, can get stuck in local minima.
- BUT Extremely popular in practice.