Support Vector Machines

Aarti Singh

Machine Learning 10-701/15-781
Oct 18, 2010

ACHI

Support Vector Machines

WX+b>0 WX+b<0 Linearly separable case
+ min W.w
~ - w,b
e i = s.t. (Wx+b)y; 21 V]
Q
=+ + = -
+ X
P Solve efficiently by quadratic
- = programming (QP)
I — Well-studied solution
L — - algorithms

Support Vectors

Linear hyperplane defined by

wXx+b>0 w.x+ b <0 “support vectors”
" jo(wx+b)y; =1
s - Moving other points a little doesn’t
@ - effect the decision boundary
-+ - = only need to store the support
+ @ vectors to predict labels of new
- = points
N A
+ & @ - _ How many support vectors in
T = = linearly separable case?

< m+l

What if data is not linearly separable?

Use features of features
+ of features of features....

2 2
- - X1%, X%, X1X5, ..., €XP(X4)

But run risk of overfitting!

What if data is still not linearly
separable?

Allow “error” in classification

Soft margin approach

min w.w + C 2§
w,b J

s.t. (w.x+b) y; 2 1-§ V]
20 V]

G - “slack” variables
= (>1 if x; misclassifed)
pay linear penalty if mistake
C - tradeoff parameter (chosen by
cross-validation)

Still QP © ’

Soft-margin SVM

Soften the constraints:

(W.x+b) y; 2 1-§ V]
20 V]

Penalty for misclassifying:
C§

How do we recover hard
margin SVM?
SetC =00

Support Vectors

Soften the constraints:

(W.x+b) y; 2 1-§ V]
20 V]

Penalty for misclassifying:
C§

How do we recover hard
margin SVM?
SetC =00

Slack variables — Hinge loss

Complexity penalization

& =loss(f(x;),y;) - mm WW+CZE
st (wx+b)yJ_1§ Vj

) =sgn(w-x; +b
fzj) = sgn(j+b) E,J-ZO Vi

=1 —(w-z; +b)y;))+ Hinge loss

0-1 loss \
N

-1 0o 1 (W -z, +b)y;

Constrained Optimization

o = 0 constraint is ineffective
o > 0 constraint is effective

Primal problem:
min, x2
s.t. x>0b

Moving the constraint to objective function
Lagrangian:

L(z,a) = 22 — a(z —b)
s.t. >0

Dual problem:

ming L(x,
maxq d(a)/ v Lz,)

s.t. >0

Dual SVM - linearly separable case

* Primal problem: minimizey, ; %w.w

(W.Xj —I— b) yj Z]., Vj
w - weights on features

* Dual problem:
L(w,b,a) = %W.W — > KW.XJ' + b) Y — 1}
Oéj Z O, Vj
a - weights on training pts

10

Dual SVM - linearly separable case

* Dual problem:

MaXa MiNy , L(w,b,) = %W.W — 2.5 Kw.xj + b) Yj — 1}

a; > 0, Vj

oL

8_ — 0 = W = Z YK If we can solve for
w j as (dual problem),
o then we have a
=0 — o = 0 solution for w,b
Ob Z 745 (primal problem)

J

11

Dual SVM Interpretation: Sparsity

W=) ajyiX;
;

Only few oys can be
non-zero : where
constraint is tight

(w.x; + bly, =1

Support vectors —
training points j whose
QS are non-zero

12

Dual SVM - linearly separable case

. 1
MaxiMmIZeq ;o — 52 j 0GOYY ;XX

> 0y; = O

8% Z O
Dual problem is also QP W=) oYX
Solution gives ais > ¢

= Yp — W.Xy

for any k where a; > 0O

Use support vectors to compute b

Dual SVM — non-separable case

* Primal problem:
minimizeW’b %w.w —+ C’Zj &5
(wx;j+b)y; >1-¢, V) o
£ >0, Vj oy

Lagrange
* Dual problem: Multipliers

MaXq,, MiNg p L(W, b, a, 1)
st.a; >0 Vg
pi >0 Vg

14

Dual SVM — non-separable case

L 1
MaXimilZeq Zz Q; — 5 ZZJ Q0 5YiY XX

2. 0y = O
Peaie
oL Intuition:
comes from — = () : o
oL Earlier - If constraint violated, o, >e°

Now - If constraint violated, o, < C

Dual problem is also QP W = Z Y Xq

?
b= Y. — W.XL

for any k where C' > a;. > 0

Solution gives ;s >

So why solve the dual SVM?

* There are some quadratic programming
algorithms that can solve the dual faster than
the primal, (specially in high dimensions
m>>n)

* But, more importantly, the “kernel trick”!!!

16

What if data is not linearly separable?

Use features of features
of features of features....

D(x) = (X2, X,2, X1X5, «ovr, EXP(X4))

Feature space becomes really large very quickly!

17

Higher Order Polynomials

m — input features d — degree of polynomial
d — d+m—1)!
num. terms = Tm—1 :(T) ~ m®
d d'(m —1)!
00 grows fast!
500 d=6, m = 100

about 1.6 billion terms

400
300
200

100

18

Dual formulation only depends on
dot-products, not on w!

L 1
MaXiMmiIZey ZZ Q; — 5 Zz,j Q0 5Y;Y X X g

)
> 0Y; = 0
CZOJ,L‘>O

U

maximize, ;o4 — 53 i.5 oYy K (x4, %)
*
K(x;,x;) = P(x;) - P(x;5)

>ioy; =0
02057;20

®(x) — High-dimensional feature space, but never need it explicitly as long

as we can compute the dot product fast using some Kernel K ;

Dot Product of Polynomials

d(x) = polynomials of degree exactly d

d=1 & (x)-P(z) = [o] ' [-] = 21214702 = X7

x? 22
d=2 o(x) - ®(z) = | V2z120 | - | V22120 x$27 + 2525 + 2w12021 22
x3 23
(121 + 2020)

(x-2)*

d o) k) =Kkx2) = (x 2)°

20

Finally: The Kernel Trick!

- 1
maximizeqy) ;o — 5 Zi,j OéiOéjyz'yjK(Xi, Xj)

K(x;,x5) = ®(x;) - P(x5)

>y, =0
CZO&,;ZO

Never represent features explicitly
— Compute dot products in closed form

Constant-time high-dimensional dot-
products for many classes of features

Very interesting theory — Reproducing
Kernel Hilbert Spaces

— Not covered in detail in 10701/15781, more
in 10702

W =) o;y; D(x;)
;

b=y — wW.P(xp)

for any k where C > a; > 0

21

Common Kernels

Polynomials of degree d
K(u,v) = (u-v)*

Polynomials of degree up to d
Ku,v) = (u-v+ 1)4

Gaussian/Radial kernels (polynomials of all orders — recall
series expansion of exp)

K(u,v) = exp (||u—v|2)

202
Sigmoid
K(u,v) =tanh(nu-v 4+ v)

22

Overfitting

* Huge feature space with kernels, what about
overfitting???
— Maximizing margin leads to sparse set of support
vectors

— Some interesting theory says that SVMs search for
simple hypothesis with large margin

— Often robust to overfitting

What about classification time?

w = o;y;P(x;)
i

b = Y — WCD(Xk)

for any k where C > a; > 0

 For anew input x, if we need to represent ®(x), we are in trouble!

e Recall classifier: sign(w.®(x)+b)

e Using kernels we are cool!

K(u,v) =®d(u) - d(v)

24

SVMs with Kernels

e Choose a set of features and kernel function

* Solve dual problem to obtain support vectors o,

* At classification time, compute:

w-P(x) = Z oy K (%, X;)

b=y — > oy K(xp,x;)

)
for any k where C > a3 > 0

m sign (w - ®(x) + b)

25

SVMs vs. Kernel Regression

SVMs Kernel Regression
sign (w - P(x) + b) S K (%)
i o (@«D)

sign (ZiK(X, x;) + b)

Differences:

* SVMs:
— Learn weights o, (and bandwidth)
— Often sparse solution

* KR:
— Fixed “weights”, learn bandwidth
— Solution may not be sparse
— Much simpler to implement

26

SVMs vs. Logistic Regression

SVMs Logistic
Regression
Loss function Hinge loss Log-loss
High dimensional Yes! Yes!

features with
kernels

Kernels in Logistic Regression

1

PY =1]zw) = 1 oW (x)Fb)

* Define weights in terms of features:
W — Z O{icb(Xi)
0

1
1 4 e~ (i ai®(x;)-P(x)+b)
1
1 —I— e_(Zé aiK(XaX‘i)_I_b)

PY=1|z,w) =

* Derive simple gradient descent rule on o

28

SVMs vs. Logistic Regression

SVMs Logistic
Regression

Loss function Hinge loss Log-loss
High dimensional Yes! Yes!
features with
kernels
Solution sparse Often yes! Almost always no!
Semantics of “Margin” Real probabilities
output

What you need to know...

Dual SVM formulation
— How it’s derived

The kernel trick

Common kernels

Differences between SVMs and kernel regression
Differences between SVMs and logistic regression

Kernelized logistic regression

30

W
W
W

Announcements - Midterm

hen: Wednesday, 10/20

nere: In Class

hat: You, your pencil, your textbook, your notes,

course slides, yourealeglater, your good mood :)

What NOT: No computers, iphones, or anything else
that has an internet connection.

Material: Everything from the beginning of the
semester, until, and including SVMs and the Kernel
trick

31

Midterm Review

What is ML? loss functions
Bayes optimal rules (classification, regression)
Parametric approaches
— Learning distributions: MLLE, MAP
— Classification: Naive Bayes, Logistic Regression
— Regression: Linear
Non-parametric approaches
— Density estimation: Histogram, Kernel density estimation
— Classification: kNN, Decision Trees
— Regression: Kernel regression

Model Selection, Overfitting, Bias-variance tradeoff, estimating the
generalization error

Boosting, SVM

32

