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Support Vector Machines
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w.x + b > 0 w.x + b < 0

g g

min  w.w
w,b

s.t. (w.xj+b) yj ≥ 1 j 

Solve efficiently by quadratic 
programming (QP)

– Well-studied solution 
algorithms

Linearly separable case



Support Vectors
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w.x + b > 0 w.x + b < 0

g g

Linear hyperplane defined by 
“support vectors”

j: (w.xj+b) yj = 1

Moving other points a little doesn’t 
effect the decision boundary 

only need to store the support 
vectors to predict labels of new 
points

How many support vectors in 
linearly separable case?

≤ m+1



What if data is not linearly separable?
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Use features of features 
of features of features….

But run risk of overfitting!

x1
2, x2

2, x1x2, …., exp(x1)



What if data is still not linearly 
separable?
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min  w.w + C Σξj
w,b

s.t. (w.xj+b) yj ≥ 1-ξj j

ξj ≥ 0 j

j

Allow “error” in classification

ξj - “slack” variables 
= (>1 if xj misclassifed)

pay linear penalty if mistake

C  - tradeoff parameter (chosen by 

cross-validation)

Still QP 

Soft margin approach



Soft-margin SVM
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(w.xj+b) yj ≥ 1-ξj j

ξj ≥ 0 j

Soften the constraints:

Penalty for misclassifying:

C ξj

How do we recover hard
margin SVM?

Set C = ∞



Support Vectors
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(w.xj+b) yj ≥ 1-ξj j

ξj ≥ 0 j

Soften the constraints:

Penalty for misclassifying:

C ξj

How do we recover hard
margin SVM?

Set C = ∞



Slack variables – Hinge loss
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min  w.w + C Σξj
w,b

s.t. (w.xj+b) yj ≥ 1-ξj j

ξj ≥ 0 j

j

Complexity penalization

Hinge loss

0-1 loss

0-1 1



Constrained Optimization
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Moving the constraint to objective function
Lagrangian:

Dual problem:

 = 0 constraint is ineffective
 > 0  constraint is effective

b +ve

Primal problem:



Dual SVM – linearly separable case

• Primal problem:

• Dual problem:  
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w – weights on features

 – weights on training pts



Dual SVM – linearly separable case

• Dual problem:  
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If we can solve for 
s (dual problem), 
then we have a 
solution for w,b
(primal problem) 



Dual SVM Interpretation: Sparsity
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Only few js can be 
non-zero : where 
constraint is tight

(w.xj + b)yj = 1

Support vectors –
training points j whose 
js are non-zero

j > 0

j > 0

j > 0

j = 0

j = 0

j = 0



Dual SVM – linearly separable case

Dual problem is also QP

Solution gives js
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Use support vectors to compute b



Dual SVM – non-separable case
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• Primal problem:

• Dual problem:  
Lagrange 
Multipliers



Dual SVM – non-separable case
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Dual problem is also QP

Solution gives js

comes from
Intuition:
Earlier - If constraint violated, i →∞
Now - If constraint violated, i ≤ C



So why solve the dual SVM?

• There are some quadratic programming 
algorithms that can solve the dual faster than 
the primal, (specially in high dimensions 
m>>n)

• But, more importantly, the “kernel trick”!!!
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What if data is not linearly separable?
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Use features of features 
of features of features….

Feature space becomes really large very quickly!

Φ(x) = (x1
2, x2

2, x1x2, …., exp(x1))



Higher Order Polynomials
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m – input features d – degree of polynomial

grows fast!
d = 6, m = 100
about 1.6 billion terms



Dual formulation only depends on 
dot-products, not on w!
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Φ(x) – High-dimensional feature space, but never need it explicitly as long 
as we can compute the dot product fast using some Kernel K



Dot Product of Polynomials
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d=1

d=2

d



Finally: The Kernel Trick!
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• Never represent features explicitly
– Compute dot products in closed form

• Constant-time high-dimensional dot-
products for many classes of features

• Very interesting theory – Reproducing 
Kernel Hilbert Spaces
– Not covered in detail in 10701/15781, more 

in 10702



Common Kernels
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• Polynomials of degree d

• Polynomials of degree up to d

• Gaussian/Radial kernels (polynomials of all orders – recall 
series expansion of exp)

• Sigmoid



Overfitting
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• Huge feature space with kernels, what about 
overfitting???

– Maximizing margin leads to sparse set of support 
vectors 

– Some interesting theory says that SVMs search for 
simple hypothesis with large margin

– Often robust to overfitting



What about classification time?
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• For a new input x, if we need to represent (x), we are in trouble!

• Recall classifier: sign(w.(x)+b)

• Using kernels we are cool!



SVMs with Kernels
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• Choose a set of features and kernel function

• Solve dual problem to obtain support vectors i

• At classification time, compute:

Classify as
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SVMs Kernel Regression

or

Differences:
• SVMs:

– Learn weights i (and bandwidth)
– Often sparse solution

• KR:
– Fixed “weights”, learn bandwidth
– Solution may not be sparse
– Much simpler to implement

SVMs vs. Kernel Regression



SVMs vs. Logistic Regression
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SVMs Logistic

Regression

Loss function Hinge loss Log-loss

High dimensional 

features with 

kernels

Yes! Yes!

Solution sparse Often yes! Almost always no!

Semantics of 

output

“Margin” Real probabilities



Kernels in Logistic Regression
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• Define weights in terms of features:

• Derive simple gradient descent rule on i



SVMs vs. Logistic Regression
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SVMs Logistic

Regression

Loss function Hinge loss Log-loss

High dimensional 

features with 

kernels

Yes! Yes!

Solution sparse Often yes! Almost always no!

Semantics of 

output

“Margin” Real probabilities



What you need to know…
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• Dual SVM formulation

– How it’s derived

• The kernel trick

• Common kernels

• Differences between SVMs and kernel regression

• Differences between SVMs and logistic regression

• Kernelized logistic regression



Announcements - Midterm

• When:  Wednesday, 10/20

• Where: In Class

• What:   You, your pencil, your textbook, your notes, 
course slides, your calculator, your good mood :)

• What NOT: No computers, iphones, or anything else 
that has an internet connection.

• Material: Everything from the beginning of the 
semester, until, and including SVMs and the Kernel 
trick
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Midterm Review

• What is ML? loss functions

• Bayes optimal rules (classification, regression)

• Parametric approaches

– Learning distributions: MLE, MAP

– Classification: Naïve Bayes, Logistic Regression

– Regression: Linear

• Non-parametric approaches

– Density estimation: Histogram, Kernel density estimation

– Classification: kNN, Decision Trees

– Regression: Kernel regression

• Model Selection, Overfitting, Bias-variance tradeoff, estimating the 
generalization error

• Boosting, SVM
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