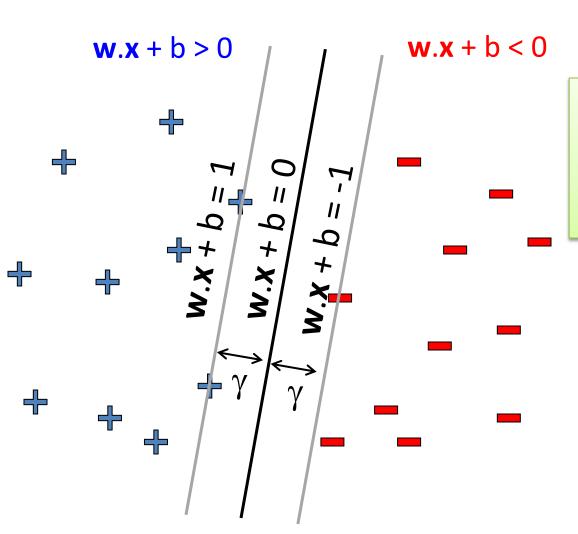
Support Vector Machines

Aarti Singh

Machine Learning 10-701/15-781 Oct 18, 2010

Support Vector Machines



Linearly separable case

min w.w

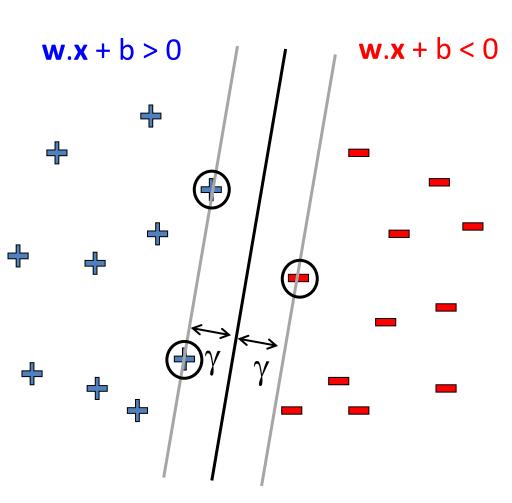
$$\mathbf{w}_{,b}$$

s.t. $(\mathbf{w}.\mathbf{x}_i+b) \mathbf{y}_i \geq 1 \quad \forall \mathbf{j}$

Solve efficiently by quadratic programming (QP)

Well-studied solution algorithms

Support Vectors



Linear hyperplane defined by "support vectors"

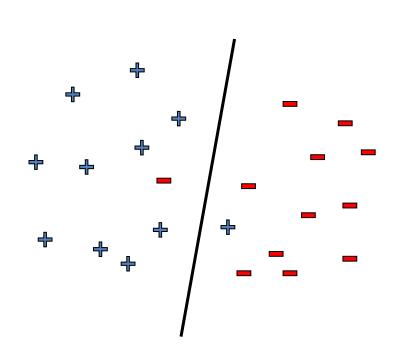
$$j: (\mathbf{w}.\mathbf{x}_{j}+b) \ \mathbf{y}_{j} = 1$$

Moving other points a little doesn't effect the decision boundary

only need to store the support vectors to predict labels of new points

How many support vectors in linearly separable case?

What if data is not linearly separable?



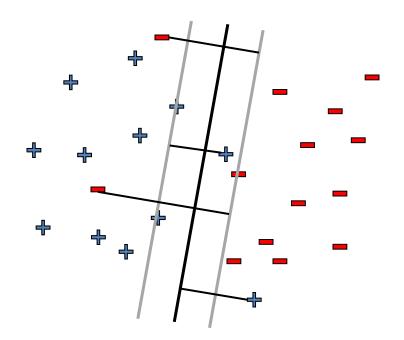
Use features of features of features of features....

$$x_1^2, x_2^2, x_1x_2,, exp(x_1)$$

But run risk of overfitting!

What if data is still not linearly separable?

Allow "error" in classification



Soft margin approach

$$\min_{\mathbf{w},b} \mathbf{w}.\mathbf{w} + C \sum_{j} \xi_{j}$$
s.t. $(\mathbf{w}.\mathbf{x}_{j}+b) y_{j} \ge 1-\xi_{j} \quad \forall j$

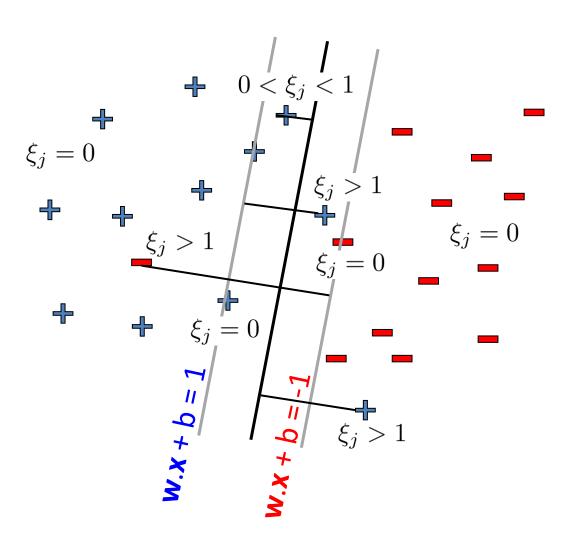
$$\xi_{j} \ge 0 \quad \forall j$$

 ξ_j - "slack" variables = (>1 if x_j misclassifed) pay linear penalty if mistake

C - tradeoff parameter (chosen by cross-validation)

Still QP ©

Soft-margin SVM



Soften the constraints:

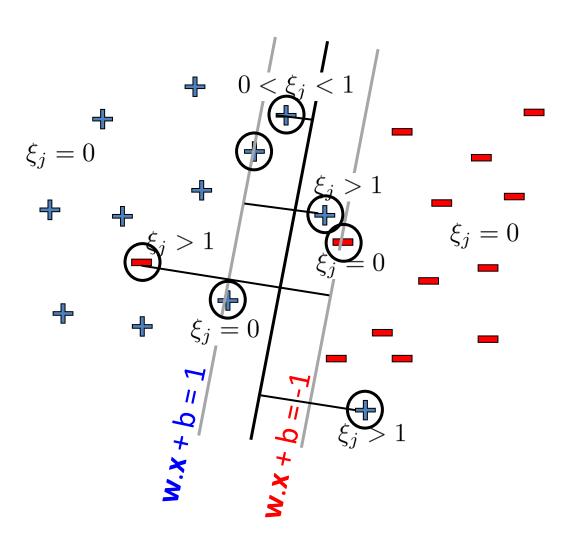
$$(\mathbf{w}.\mathbf{x}_{j}+b) \mathbf{y}_{j} \geq 1-\xi_{j} \quad \forall \mathbf{j}$$
$$\xi_{i} \geq 0 \quad \forall \mathbf{j}$$

Penalty for misclassifying:

$$C \xi_j$$

How do we recover hard margin SVM?

Support Vectors



Soften the constraints:

$$(\mathbf{w}.\mathbf{x}_{j}+b) \mathbf{y}_{j} \geq 1-\xi_{j} \quad \forall j$$
$$\xi_{j} \geq 0 \quad \forall j$$

Penalty for misclassifying:

$$C \xi_j$$

How do we recover hard margin SVM?

Slack variables – Hinge loss

Complexity penalization

$$\xi_j = \operatorname{loss}(f(x_j), y_j)$$

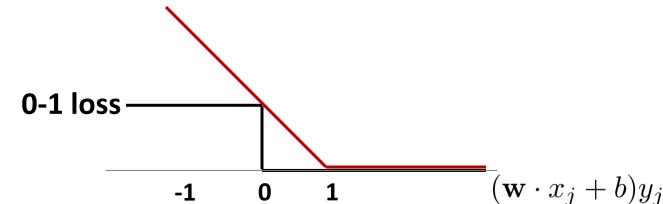
$$f(x_j) = \operatorname{sgn}(\mathbf{w} \cdot \mathbf{x_j} + \mathbf{b})$$

$$\min_{\mathbf{w},b} \mathbf{w}.\mathbf{w} + C \sum_{j} \xi_{j}$$
s.t. $(\mathbf{w}.\mathbf{x}_{j}+b) y_{j} \ge 1-\xi_{j} \quad \forall j$

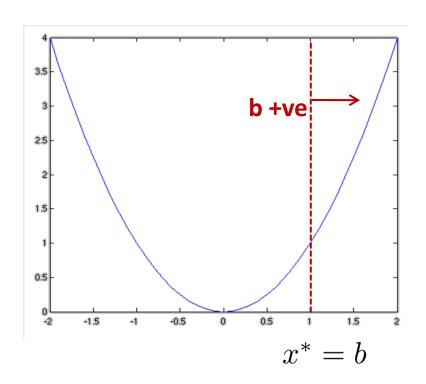
$$\xi_{j} \ge 0 \quad \forall j$$

$$\xi_j = (1 - (\mathbf{w} \cdot x_j + b)y_j))_+$$

Hinge loss



Constrained Optimization



 α = 0 constraint is ineffective α > 0 constraint is effective

Primal problem:

$$\min_x x^2$$

s.t. $x > b$

Moving the constraint to objective function Lagrangian:

$$L(x, \alpha) = x^2 - \alpha(x - b)$$

s.t. $\alpha \ge 0$

Dual problem:

max
$$_{\alpha}$$
 $d(\alpha)$ \rightarrow min $_{x} L(x,\alpha)$ s.t. $\alpha \geq 0$

Dual SVM – linearly separable case

• Primal problem: minimize_{w,b} $\frac{1}{2}$ w.w $\left(\mathbf{w}.\mathbf{x}_j + b\right)y_j \geq 1, \ \forall j$

w - weights on features

Dual problem:

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2}\mathbf{w}.\mathbf{w} - \sum_{j} \alpha_{j} \left[\left(\mathbf{w}.\mathbf{x}_{j} + b \right) y_{j} - 1 \right]$$

 $\alpha_{j} \ge 0, \ \forall j$

 α - weights on training pts

Dual SVM – linearly separable case

Dual problem:

$$\max_{\alpha} \min_{\mathbf{w}, b} L(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w} \cdot \mathbf{w} - \sum_{j} \alpha_{j} \left[\left(\mathbf{w} \cdot \mathbf{x}_{j} + b \right) y_{j} - 1 \right]$$

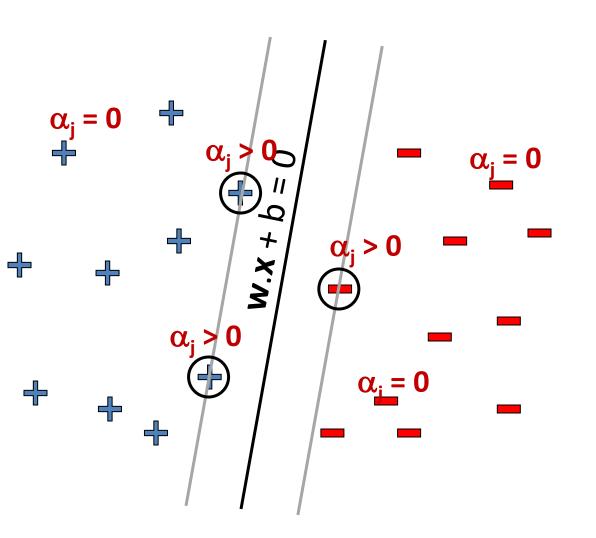
$$\alpha_{j} \geq 0, \ \forall j$$

$$\frac{\partial L}{\partial \mathbf{w}} = 0 \qquad \Rightarrow \mathbf{w} = \sum_{j} \alpha_{j} y_{j} \mathbf{x}_{j}$$

$$\frac{\partial L}{\partial b} = 0 \qquad \Rightarrow \sum_{j} \alpha_{j} y_{j} = 0$$

If we can solve for as (dual problem), then we have a solution for **w**,b (primal problem)

Dual SVM Interpretation: Sparsity



$$\mathbf{w} = \sum_{j} \alpha_{j} y_{j} \mathbf{x}_{j}$$

Only few α_j s can be non-zero : where constraint is tight

$$(\mathbf{w}.\mathbf{x}_i + \mathbf{b})\mathbf{y}_i = 1$$

Support vectors – training points j whose α_i s are non-zero

Dual SVM – linearly separable case

maximize
$$_{\alpha}$$
 $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} . \mathbf{x}_{j}$ $\sum_{i} \alpha_{i} y_{i} = 0$ $\alpha_{i} \geq 0$

Dual problem is also QP $\mathbf{w} = \sum_i \alpha_i y_i \mathbf{x}_i$ Solution gives $\alpha_j \mathbf{s}$ $b = y_k - \mathbf{w}.\mathbf{x}_k$ for any k where $\alpha_k > 0$

$$\mathbf{w} = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i}$$
$$b = y_{k} - \mathbf{w} \cdot \mathbf{x}_{k}$$

Use support vectors to compute b

Dual SVM – non-separable case

Primal problem:

minimize_{w,b}
$$\frac{1}{2}$$
w.w + $C \sum_{j} \xi_{j}$ $\left(\mathbf{w}.\mathbf{x}_{j} + b\right) y_{j} \geq 1 - \xi_{j}, \ \forall j$ $\xi_{j} \geq 0, \ \forall j$

 $egin{pmatrix} lpha_j \ \mu_j \ \end{pmatrix}$

Dual problem:

$$\begin{aligned} \max_{\alpha,\mu} \min_{\mathbf{w},b} L(\mathbf{w},b,\alpha,\mu) \\ s.t.\alpha_j &\geq \mathbf{0} \quad \forall j \\ \mu_j &\geq \mathbf{0} \quad \forall j \end{aligned}$$

Lagrange Multipliers

Dual SVM – non-separable case

$$\begin{aligned} \text{maximize}_{\alpha} \quad & \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}. \mathbf{x}_{j} \\ & \sum_{i} \alpha_{i} y_{i} = \mathbf{0} \\ & C \geq \alpha_{i} \geq \mathbf{0} \end{aligned}$$
 comes from
$$\begin{aligned} & \frac{\partial L}{\partial \mu} = \mathbf{0} & & \frac{\text{Intuition:}}{\text{Earlier - If constraint violated, } \alpha_{i} \rightarrow \infty} \\ & & \text{Now - If constraint violated, } \alpha_{i} \leq \mathbf{C} \end{aligned}$$

Dual problem is also QP Solution gives α_i s

$$\mathbf{w} = \sum_i \alpha_i y_i \mathbf{x}_i$$

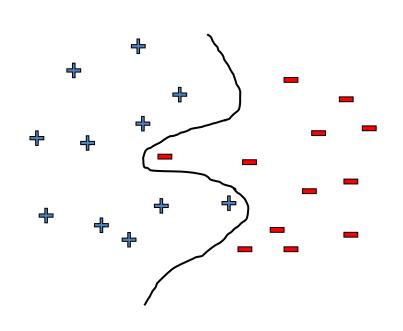
$$b = y_k - \mathbf{w}.\mathbf{x}_k$$
 for any k where $C > \alpha_k > 0$

So why solve the dual SVM?

 There are some quadratic programming algorithms that can solve the dual faster than the primal, (specially in high dimensions m>>n)

• But, more importantly, the "kernel trick"!!!

What if data is not linearly separable?



Use features of features of features of features....

$$\Phi(\mathbf{x}) = (x_1^2, x_2^2, x_1x_2,, \exp(x_1))$$

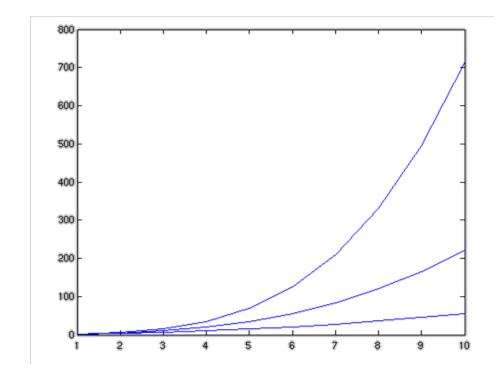
Feature space becomes really large very quickly!

Higher Order Polynomials

m – input features

d – degree of polynomial

num. terms
$$= \begin{pmatrix} d+m-1 \\ d \end{pmatrix} = \frac{(d+m-1)!}{d!(m-1)!} \sim m^d$$



grows fast! d = 6, m = 100 about 1.6 billion terms

Dual formulation only depends on dot-products, not on w!

$$\begin{aligned} \text{maximize}_{\alpha} & \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}. \mathbf{x}_{j} \\ & \sum_{i} \alpha_{i} y_{i} = 0 \\ & C \geq \alpha_{i} \geq 0 \end{aligned}$$

$$\text{maximize}_{\alpha} & \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} K(\mathbf{x}_{i}, \mathbf{x}_{j}) \\ & K(\mathbf{x}_{i}, \mathbf{x}_{j}) = \Phi(\mathbf{x}_{i}) \cdot \Phi(\mathbf{x}_{j}) \\ & \sum_{i} \alpha_{i} y_{i} = 0 \\ & C > \alpha_{i} > 0 \end{aligned}$$

 $\Phi(\mathbf{x})$ – High-dimensional feature space, but never need it explicitly as long as we can compute the dot product fast using some Kernel K

Dot Product of Polynomials

 $\Phi(x)$ = polynomials of degree exactly d

$$\mathbf{x} = \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] \quad \mathbf{z} = \left[\begin{array}{c} z_1 \\ z_2 \end{array} \right]$$

d=1
$$\Phi(\mathbf{x}) \cdot \Phi(\mathbf{z}) = \begin{vmatrix} x_1 \\ x_2 \end{vmatrix} \cdot \begin{vmatrix} z_1 \\ z_2 \end{vmatrix} = x_1 z_1 + x_2 z_2 = \mathbf{x} \cdot \mathbf{z}$$

$$d=2 \ \Phi(\mathbf{x}) \cdot \Phi(\mathbf{z}) = \begin{bmatrix} x_1^2 \\ \sqrt{2}x_1x_2 \\ x_2^2 \end{bmatrix} \cdot \begin{bmatrix} z_1^2 \\ \sqrt{2}z_1z_2 \\ z_2^2 \end{bmatrix} = x_1^2z_1^2 + x_2^2z_2^2 + 2x_1x_2z_1z_2$$
$$= (x_1z_1 + x_2z_2)^2$$
$$= (\mathbf{x} \cdot \mathbf{z})^2$$

d
$$\Phi(\mathbf{x}) \cdot \Phi(\mathbf{z}) = K(\mathbf{x}, \mathbf{z}) = (\mathbf{x} \cdot \mathbf{z})^d$$

Finally: The Kernel Trick!

maximize_{$$\alpha$$} $\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} K(\mathbf{x}_{i}, \mathbf{x}_{j})$

$$K(\mathbf{x}_{i}, \mathbf{x}_{j}) = \Phi(\mathbf{x}_{i}) \cdot \Phi(\mathbf{x}_{j})$$

$$\sum_{i} \alpha_{i} y_{i} = 0$$

$$C > \alpha_{i} > 0$$

- Never represent features explicitly
 - Compute dot products in closed form
- Constant-time high-dimensional dotproducts for many classes of features
- Very interesting theory Reproducing Kernel Hilbert Spaces
 - Not covered in detail in 10701/15781, more in 10702

$$\mathbf{w} = \sum_i lpha_i y_i \Phi(\mathbf{x}_i)$$
 $b = y_k - \mathbf{w}.\Phi(\mathbf{x}_k)$ for any k where $C > lpha_k > 0$

$$b = y_k - \mathbf{w}.\Phi(\mathbf{x}_k)$$

Common Kernels

Polynomials of degree d

$$K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v})^d$$

Polynomials of degree up to d

$$K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v} + 1)^d$$

 Gaussian/Radial kernels (polynomials of all orders – recall series expansion of exp)

$$K(\mathbf{u}, \mathbf{v}) = \exp\left(-\frac{||\mathbf{u} - \mathbf{v}||^2}{2\sigma^2}\right)$$

Sigmoid

$$K(\mathbf{u}, \mathbf{v}) = \tanh(\eta \mathbf{u} \cdot \mathbf{v} + \nu)$$

Overfitting

- Huge feature space with kernels, what about overfitting???
 - Maximizing margin leads to sparse set of support vectors
 - Some interesting theory says that SVMs search for simple hypothesis with large margin
 - Often robust to overfitting

What about classification time?

$$\mathbf{w} = \sum_i lpha_i y_i \Phi(\mathbf{x}_i)$$
 $b = y_k - \mathbf{w}.\Phi(\mathbf{x}_k)$ for any k where $C > lpha_k > 0$

$$b = y_k - \mathbf{w}.\Phi(\mathbf{x}_k)$$

- For a new input **x**, if we need to represent $\Phi(\mathbf{x})$, we are in trouble!
- Recall classifier: sign($\mathbf{w}.\Phi(\mathbf{x})$ +b)
- Using kernels we are cool!

$$K(\mathbf{u}, \mathbf{v}) = \Phi(\mathbf{u}) \cdot \Phi(\mathbf{v})$$

SVMs with Kernels

- Choose a set of features and kernel function
- Solve dual problem to obtain support vectors α_{i}
- At classification time, compute:

$$\begin{aligned} \mathbf{w} \cdot \Phi(\mathbf{x}) &= \sum_i \alpha_i y_i K(\mathbf{x}, \mathbf{x}_i) \\ b &= y_k - \sum_i \alpha_i y_i K(\mathbf{x}_k, \mathbf{x}_i) \\ \text{for any } k \text{ where } C > \alpha_k > 0 \end{aligned} \qquad \text{Classify as} \qquad sign\left(\mathbf{w} \cdot \Phi(\mathbf{x}) + b\right)$$

SVMs vs. Kernel Regression

SVMs

$$sign\left(\mathbf{w}\cdot\Phi(\mathbf{x})+b\right)$$

or

$$sign\left(\sum_{i}\alpha_{i}y_{i}K(\mathbf{x},\mathbf{x}_{i})+b\right)$$

Kernel Regression

$$sign\left(\frac{\sum_{i} y_{i} K(\mathbf{x}, \mathbf{x}_{i})}{\sum_{j} K(\mathbf{x}, \mathbf{x}_{j})}\right)$$

Differences:

- SVMs:
 - Learn weights $\alpha_{\rm i}$ (and bandwidth)
 - Often sparse solution
- KR:
 - Fixed "weights", learn bandwidth
 - Solution may not be sparse
 - Much simpler to implement

SVMs vs. Logistic Regression

	SVMs	Logistic Regression
Loss function	Hinge loss	Log-loss
High dimensional features with kernels	Yes!	Yes!

Kernels in Logistic Regression

$$P(Y = 1 \mid x, \mathbf{w}) = \frac{1}{1 + e^{-(\mathbf{w} \cdot \Phi(\mathbf{x}) + b)}}$$

Define weights in terms of features:

$$\mathbf{w} = \sum_{i} \alpha_{i} \Phi(\mathbf{x}_{i})$$

$$P(Y = 1 \mid x, \mathbf{w}) = \frac{1}{1 + e^{-(\sum_{i} \alpha_{i} \Phi(\mathbf{x}_{i}) \cdot \Phi(\mathbf{x}) + b)}}$$

$$= \frac{1}{1 + e^{-(\sum_{i} \alpha_{i} K(\mathbf{x}, \mathbf{x}_{i}) + b)}}$$

• Derive simple gradient descent rule on $\alpha_{\rm i}$

SVMs vs. Logistic Regression

	SVMs	Logistic Regression
Loss function	Hinge loss	Log-loss
High dimensional features with kernels	Yes!	Yes!
Solution sparse	Often yes!	Almost always no!
Semantics of output	"Margin"	Real probabilities

What you need to know...

- Dual SVM formulation
 - How it's derived
- The kernel trick
- Common kernels
- Differences between SVMs and kernel regression
- Differences between SVMs and logistic regression
- Kernelized logistic regression

Announcements - Midterm

- When: Wednesday, 10/20
- Where: In Class
- What: You, your pencil, your textbook, your notes, course slides, your calculator, your good mood:)
- What NOT: No computers, iphones, or anything else that has an internet connection.
- Material: Everything from the beginning of the semester, until, and including SVMs and the Kernel trick

Midterm Review

- What is ML? loss functions
- Bayes optimal rules (classification, regression)
- Parametric approaches
 - Learning distributions: MLE, MAP
 - Classification: Naïve Bayes, Logistic Regression
 - Regression: Linear
- Non-parametric approaches
 - Density estimation: Histogram, Kernel density estimation
 - Classification: kNN, Decision Trees
 - Regression: Kernel regression
- Model Selection, Overfitting, Bias-variance tradeoff, estimating the generalization error
- Boosting, SVM