Announcements - Homework

e Homework 1 is graded, please collect at end of
lecture

e Homework 2 due today

* Homework 3 out soon (watch email)
* Ques 1—midterm review
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Announcements - Midterm

When: Wednesday, 10/20

Where: In Class

What: You, your pencil, your textbook, your notes,
course slides, your calculator, your good mood :)

What NOT: No computers, iphones, or anything else
that has an internet connection.

Material: Everything from the beginning of the
semester, until, and including SVMs and the Kernel
trick



Recitation Tomorrow!

Boosting, SVM (convex optimization),
Midterm review!

Strongly recommended!!

Place: NSH 3305 (Note: change from last time)

Time: 5-6 pm

Rob
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At Pittsburgh G-20 summit ...




Linear classifiers — which line is
better?




Pick the one with the largest margin!



Parameterizing the decision boundary
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Parameterizing the decision boundary

wXx+b>0 wX+b<0
+ ]
o'y o =
/ -
++QI
+ — -
+ X
Sl e _ -
+
Sl 4+ = _

“confidence” ==(“ij%—b)yj

10



Maximizing the margin

wX+b<0

Distance of closest examples

= from the line/hyperplane
R — margin =y = 2a/|w]|
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Maximizing the margin

w.Xx+b<0
Distance of closest examples
= from the line/hyperplane
R — margin =y = 2a/|w]|
- max Yy = 2a/||w]||
w,b
_ - s.t. (W.x+b) y; 2a V]

Note: ‘@’ is arbitrary (can normalize
equations by a) 12



Support Vector Machines

wX+b>0 wX+b<0
+ min W.w
~ . W,b
o I = s.t. (Wx+b)y; 21 V]
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Linear hyperplane defined by
“support vectors”
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wX+b>0

Support Vectors

wX+b<0

Linear hyperplane defined by
“support vectors”

Moving other points a little
doesn’t effect the decision
boundary

only need to store the
support vectors to predict
labels of new points

How many support vectors in
linearly separable case?

<m+l
14



What if data is not linearly separable?

Use features of features
+ of features of features....

2 2
- - X1%, X%, X1X5, ..., €XP(X4)

But run risk of overfitting!
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What if data is still not linearly
separable?

Allow “error” in classification
min w.w + C #tmistakes

w,b
+ s.t. (Wx+b)y; 21 Vj
o _ =
-’P -
+ - = . : ..
& + Maximize margin and minimize
= - = # mistakes on training data
y
oy = - C - tradeoff parameter
¥ Not QP ®

0/1 loss (doesn’t distinguish between
near miss and bad mistake) "



What if data is still not linearly
separable?

Allow “error” in classification

Soft margin approach

min w.w + C 2§
w,b J

s.t. (w.x+b) y; 2 1-§ V]
20 V]

G - “slack” variables
= (>1 if x; misclassifed)
pay linear penalty if mistake
C - tradeoff parameter (chosen by
cross-validation)

Still QP © Y



Slack variables — Hinge loss

Complexity penalization

& =loss(f(x;),y;) - rr‘1N|n WW+CZE
s.t. (wx+b)yJ_1§ Vj

f(zj) = sgn(w - x; 4 b) £20 V]

=1 —(w-z; +b)y;))+  Hinge loss

0-1 loss \

1 0 1 (W -z; +b)y; 18




SVM vs. Logistic Regression

SVM : Hinge loss
loss(f(x;),y;) = (1 —(w-xz; +b)y;))+

Logistic Regression : Log loss ( -ve log conditional likelihood)

loss(f(x;),y;) = —log P(y; | x;,w,b) =log(1l+ 8_(W'mj+b)yj)

Log loss\\ Hinge loss

0-1 loss

-1 0 1 (W-x; +b)y;
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What about multiple classes?
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One against all

Learn 3 classifiers
separately:
Class k vs. rest

(W, bk)k=1,2,3

y =arg maljx W, .X + b,

But w,s may not be
based on the same scale.
Note: (aw).x + (ab) is also
a solution

21




Learn 1 classifier: Multi-class SVM

Simultaneously learn 3 sets of weights
. . / / ,
W(yg)_xj + 5 > w ).Xj + W) 4+ 1, vy £ yi, V7

Margin - gap between correct

© o
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Learn 1 classifier: Multi-class SVM

Simultaneously learn 3 sets of weights

minimizey, Y, wW.wlW) +0y, Sty §§y)
W(yj).xj + W) > w®) x4+ b)) 41 — £§y)’ Vy # yj,
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What you need to know

Maximizing margin
Derivation of SVM formulation
Slack variables and hinge loss

Relationship between SVMs and logistic regression
— 0/1 loss

— Hinge loss

— Log loss

Tackling multiple class

— One against All
— Multiclass SVMs
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SVMs reminder

Regularization Hinge loss
l_‘_\ l_l_\

min w.w + C 2§

w,b

= s.t. (w.x+b) y; 2 1-§ V]
= 20 V]

Soft margin approach
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Today’s Lecture

* Learn one of the most interesting and exciting
recent advancements in machine learning

— The “kernel trick”

— High dimensional feature spaces at no extra cost!

e But first, a detour

— Constrained optimization!



Constrained Optimization

min, x2
Ss.t. x>0

ming = ming x




Lagrange Multiplier — Dual Variables

min, x2
s.t. x>0

Moving the constraint to objective function
Lagrangian:

L(z,a) = 22 — a(z — b)
s.t. >0

Solve:

min; maxa L(x, o)
s.t. a> 0 Constraint is tight when a >0
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Duality

Primal problem: Dual problem:
f (@) g(x)
— f ' 1
£ = ming x2 g* = mingz maxa 2 — alx — b)
s.t. x>5b s.t. a>0

Weak duality - ¢* < f*

For all feasible points ¥ ¢* < g(&) < f(&)

Strong duality— ¢* = f* (holds under KKT conditions)
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Lagrange Multiplier — Dual Variables

L(z,a)
Solving:  MiNgz MaXy ':132 — a(x — b)‘
s.t. >0

oL 0 N

b o=

ox 2

OL

— =0 = a" = max(2b,0)
Oa

When a > 0, constraint is tight
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