Announcements - Homework

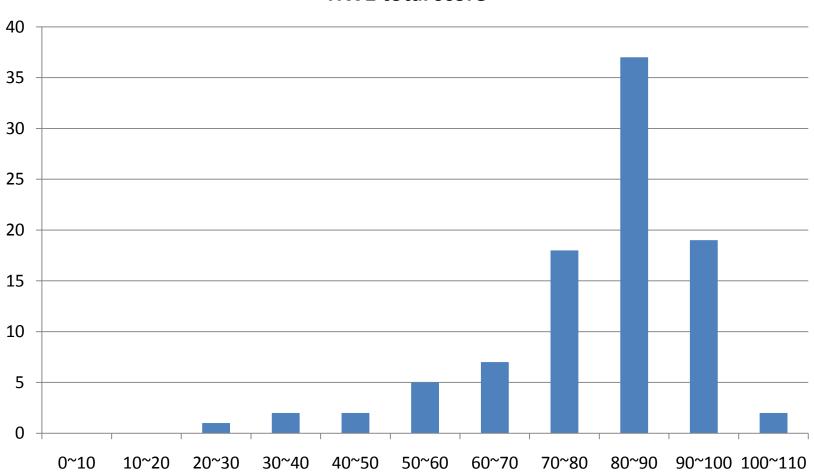
 Homework 1 is graded, please collect at end of lecture

Homework 2 due today

- Homework 3 out soon (watch email)
 - Ques 1 midterm review

HW1 score distribution

HW1 total score



Announcements - Midterm

- When: Wednesday, 10/20
- Where: In Class
- What: You, your pencil, your textbook, your notes, course slides, your calculator, your good mood:)
- What NOT: No computers, iphones, or anything else that has an internet connection.
- Material: Everything from the beginning of the semester, until, and including SVMs and the Kernel trick

Recitation Tomorrow!

- Boosting, SVM (convex optimization),
 Midterm review!
- Strongly recommended!!
- Place: NSH 3305 (Note: change from last time)
- Time: 5-6 pm

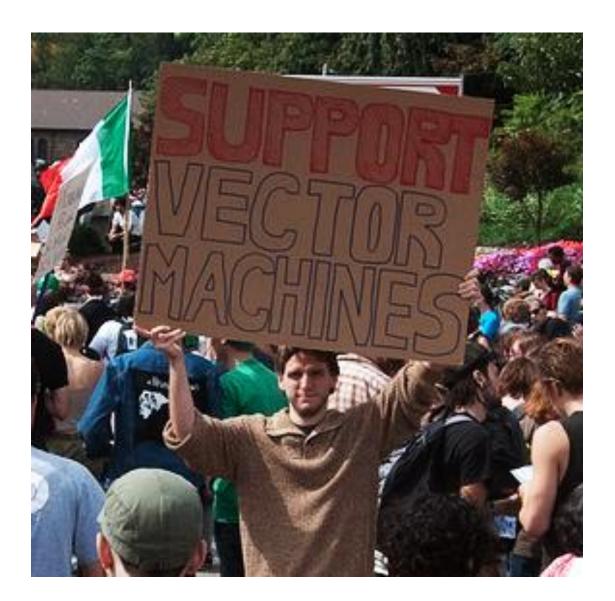
Rob

Support Vector Machines

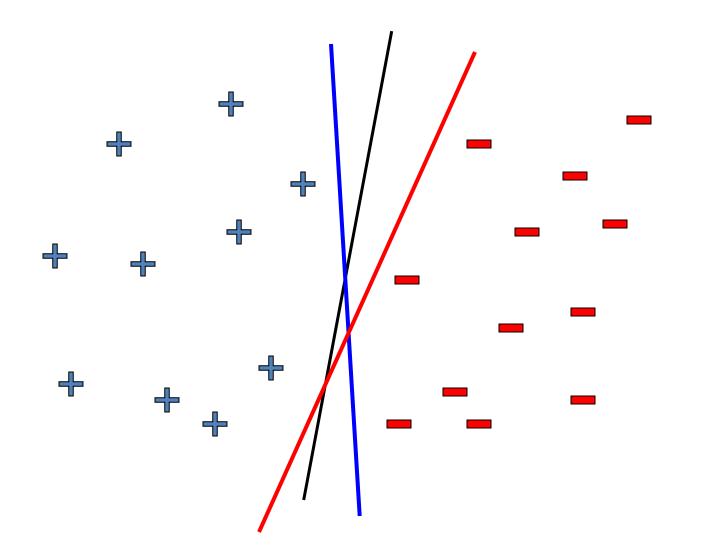
Aarti Singh

Machine Learning 10-701/15-781 Oct 13, 2010

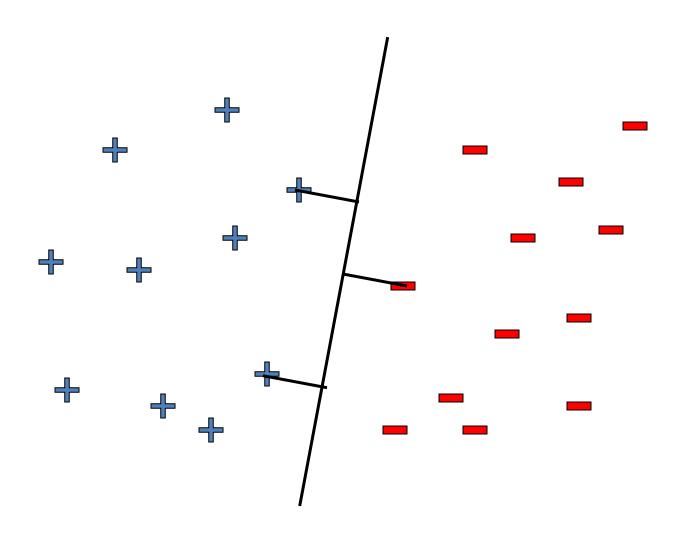
At Pittsburgh G-20 summit ...



Linear classifiers – which line is better?



Pick the one with the largest margin!



Parameterizing the decision boundary

$$\mathbf{w}.\mathbf{x} = \sum_{j} \mathbf{w}^{(j)} \mathbf{x}^{(j)} \quad \mathbf{w}.\mathbf{x} + \mathbf{b} > 0$$

$$+ \quad \mathbf{w}.\mathbf{x} + \mathbf{b} < 0$$

$$+ \quad \mathbf{w}.\mathbf{x} + \mathbf{b} < 0$$

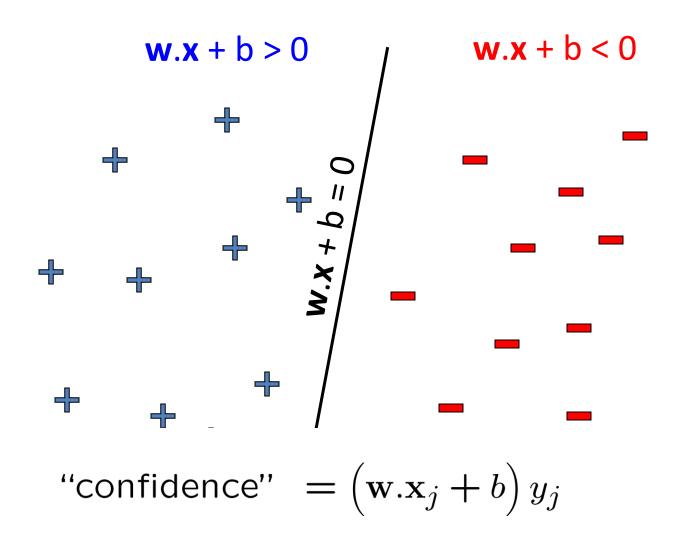
$$\left\langle x_i^{(1)},\dots,x_i^{(m)} \right
angle - m$$
 features $y_i \in \{-1,+1\}$ — class

Data:
$$\left\langle x_1^{(1)}, \dots, x_1^{(m)}, y_1 \right\rangle$$

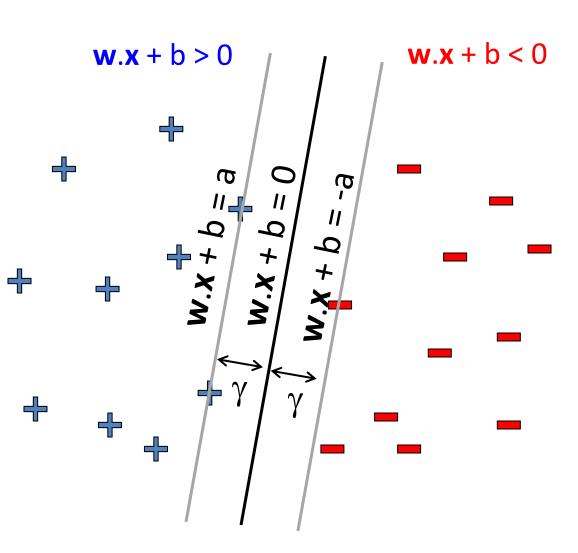
$$\vdots$$

$$\left\langle x_n^{(1)}, \dots, x_n^{(m)}, y_n \right\rangle$$

Parameterizing the decision boundary



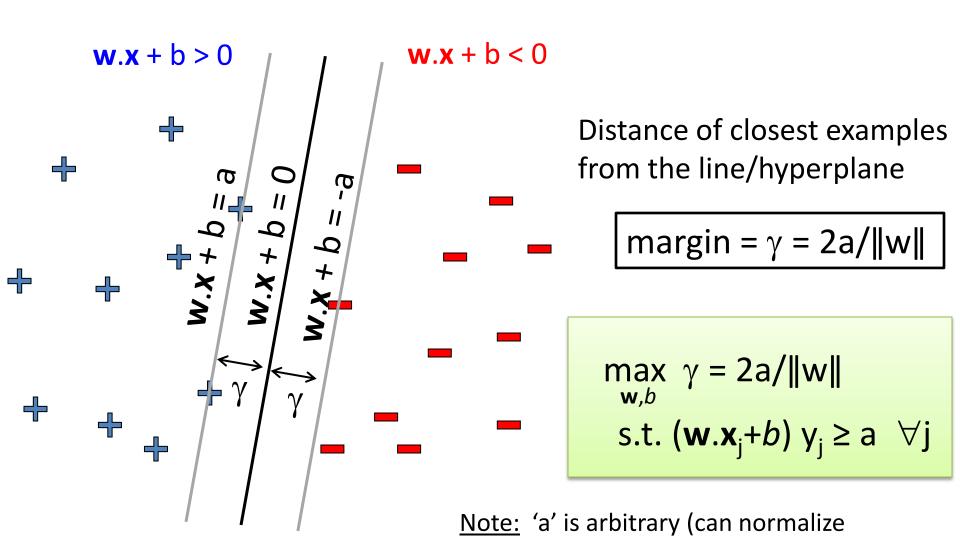
Maximizing the margin



Distance of closest examples from the line/hyperplane

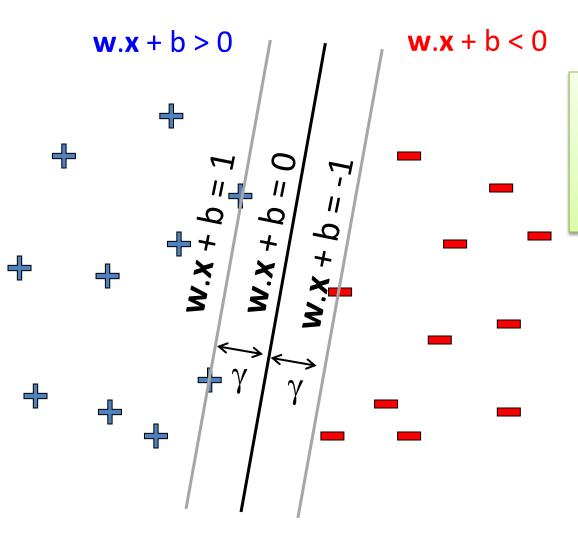
margin =
$$\gamma$$
 = 2a/ $\|w\|$

Maximizing the margin



equations by a)

Support Vector Machines



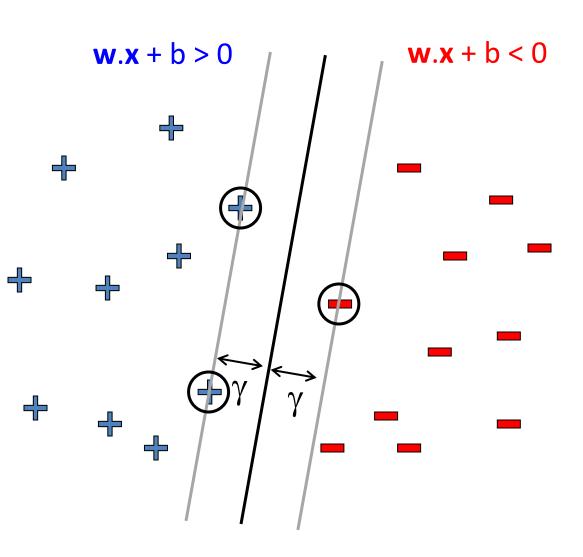
$$\min_{\mathbf{w},b} \mathbf{w}.\mathbf{w}$$
s.t. $(\mathbf{w}.\mathbf{x}_j+b) \mathbf{y}_j \ge 1 \quad \forall j$

Solve efficiently by quadratic programming (QP)

 Well-studied solution algorithms

Linear hyperplane defined by "support vectors"

Support Vectors



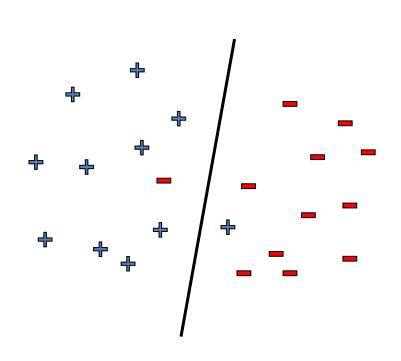
Linear hyperplane defined by "support vectors"

Moving other points a little doesn't effect the decision boundary

only need to store the support vectors to predict labels of new points

How many support vectors in linearly separable case?

What if data is not linearly separable?



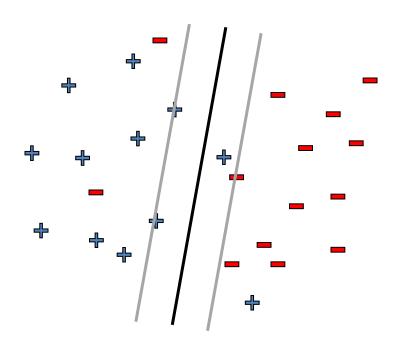
Use features of features of features of features....

$$x_1^2, x_2^2, x_1x_2,, exp(x_1)$$

But run risk of overfitting!

What if data is still not linearly separable?

Allow "error" in classification



min
$$\mathbf{w}.\mathbf{w} + C$$
 #mistakes s.t. $(\mathbf{w}.\mathbf{x}_j+b)$ $\mathbf{y}_j \ge 1 \quad \forall j$

Maximize margin and minimize # mistakes on training data

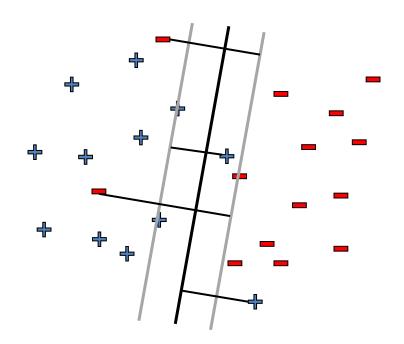
C - tradeoff parameter

Not QP ⊗

0/1 loss (doesn't distinguish between near miss and bad mistake)

What if data is still not linearly separable?

Allow "error" in classification



Soft margin approach

$$\min_{\mathbf{w},b} \mathbf{w}.\mathbf{w} + C \sum_{j} \xi_{j}$$
s.t. $(\mathbf{w}.\mathbf{x}_{j}+b) y_{j} \ge 1-\xi_{j} \quad \forall j$

$$\xi_{j} \ge 0 \quad \forall j$$

 ξ_j - "slack" variables = (>1 if x_j misclassifed) pay linear penalty if mistake

C - tradeoff parameter (chosen by cross-validation)

Slack variables – Hinge loss

Complexity penalization

$$\xi_j = \operatorname{loss}(f(x_j), y_j)$$

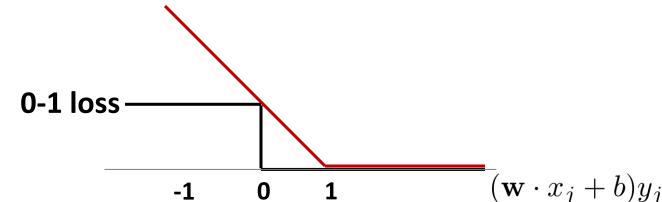
$$f(x_j) = \operatorname{sgn}(\mathbf{w} \cdot \mathbf{x_j} + \mathbf{b})$$

$$\min_{\mathbf{w},b} \mathbf{w}.\mathbf{w} + C \sum_{j} \xi_{j}$$
s.t. $(\mathbf{w}.\mathbf{x}_{j}+b) y_{j} \ge 1-\xi_{j} \quad \forall j$

$$\xi_{j} \ge 0 \quad \forall j$$

$$\xi_j = (1 - (\mathbf{w} \cdot x_j + b)y_j))_+$$

Hinge loss



18

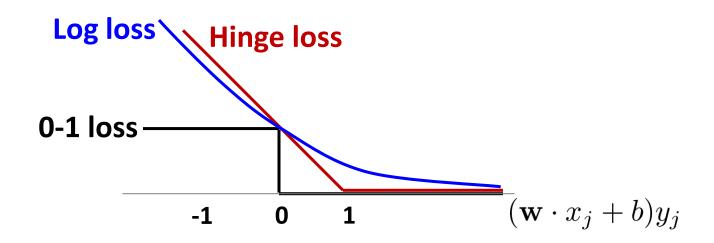
SVM vs. Logistic Regression

SVM: **Hinge loss**

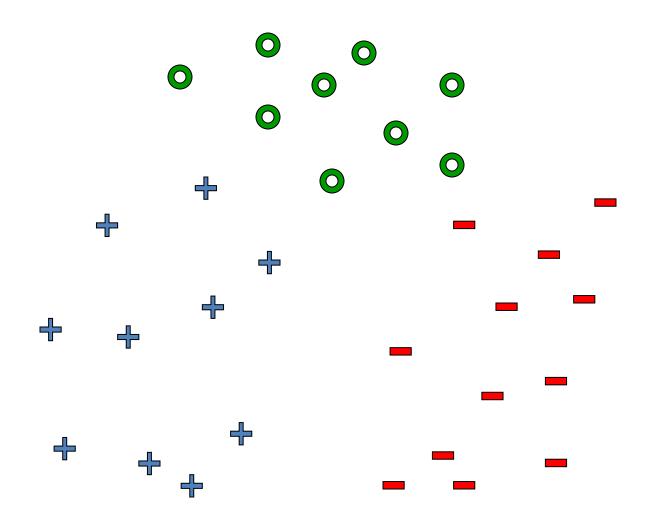
$$loss(f(x_j), y_j) = (1 - (\mathbf{w} \cdot x_j + b)y_j))_+$$

Logistic Regression: Log loss (-ve log conditional likelihood)

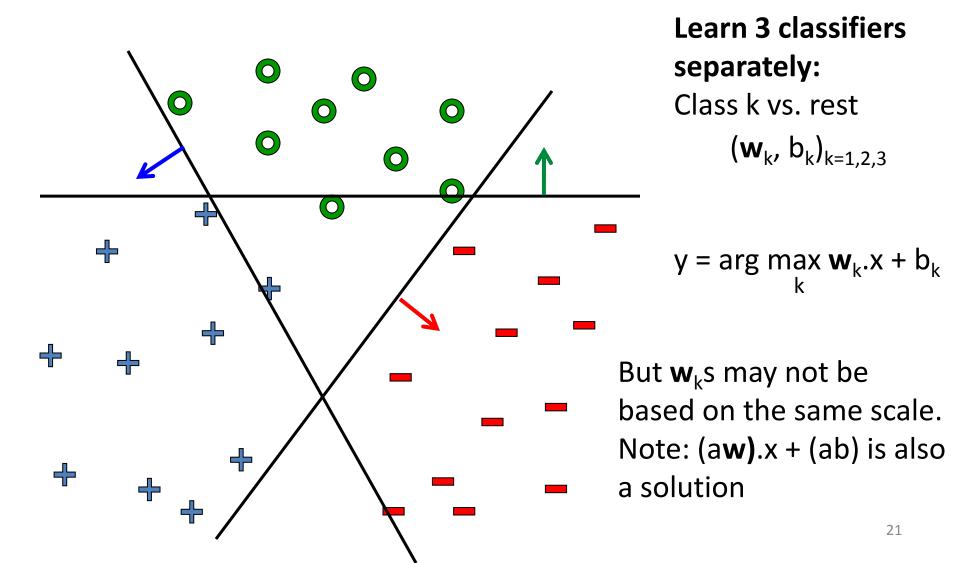
$$loss(f(x_j), y_j) = -\log P(y_j \mid x_j, \mathbf{w}, b) = \log(1 + e^{-(\mathbf{w} \cdot x_j + b)y_j})$$



What about multiple classes?



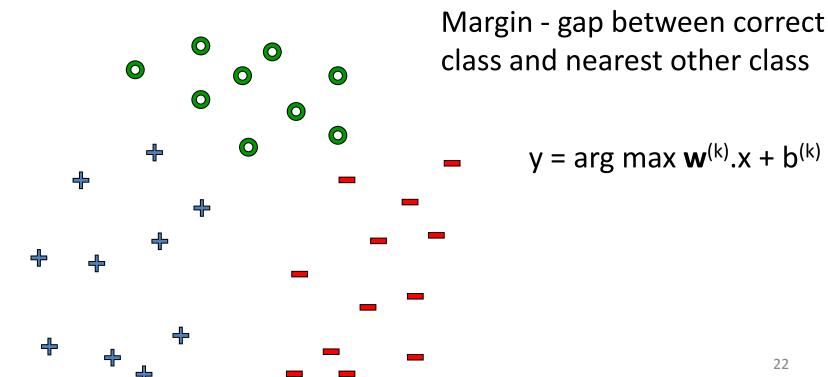
One against all



Learn 1 classifier: Multi-class SVM

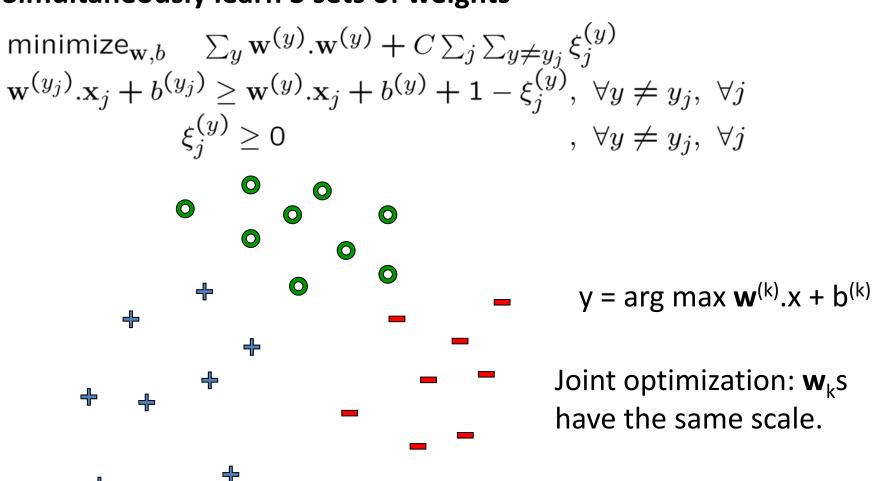
Simultaneously learn 3 sets of weights

$$\mathbf{w}^{(y_j)}.\mathbf{x}_j + b^{(y_j)} \ge \mathbf{w}^{(y')}.\mathbf{x}_j + b^{(y')} + 1, \ \forall y' \ne y_j, \ \forall j$$



Learn 1 classifier: Multi-class SVM

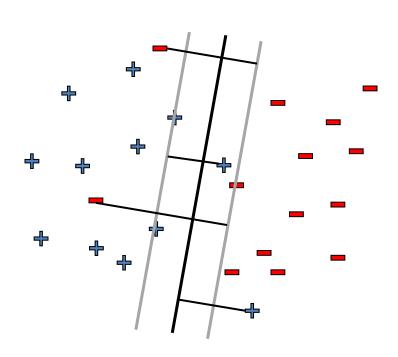
Simultaneously learn 3 sets of weights



What you need to know

- Maximizing margin
- Derivation of SVM formulation
- Slack variables and hinge loss
- Relationship between SVMs and logistic regression
 - -0/1 loss
 - Hinge loss
 - Log loss
- Tackling multiple class
 - One against All
 - Multiclass SVMs

SVMs reminder



Regularization Hinge loss

$$\min_{\mathbf{w},b} \mathbf{w} \cdot \mathbf{w} + C \Sigma \xi_{j}$$

$$\text{s.t.} (\mathbf{w} \cdot \mathbf{x}_{j} + b) y_{j} \ge 1 - \xi_{j} \quad \forall j$$

$$\xi_{j} \ge 0 \quad \forall j$$

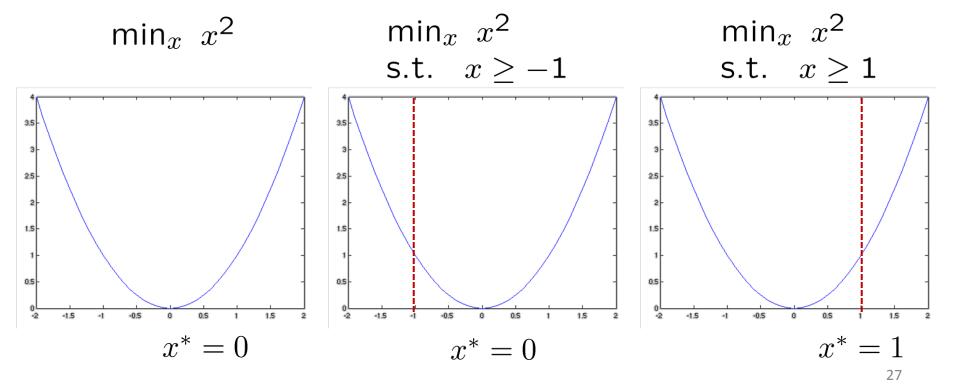
Soft margin approach

Today's Lecture

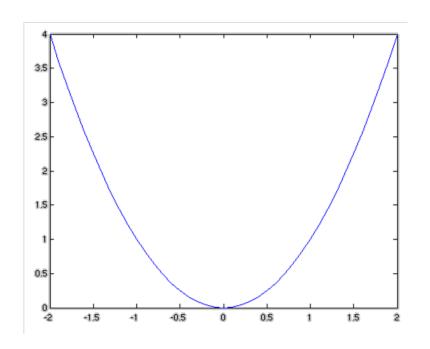
- Learn one of the most interesting and exciting recent advancements in machine learning
 - The "kernel trick"
 - High dimensional feature spaces at no extra cost!
- But first, a detour
 - Constrained optimization!

Constrained Optimization

 $\min_{x} x^{2}$ s.t. $x \ge b$



Lagrange Multiplier – Dual Variables



$$\min_x x^2$$
 s.t. $x > b$

Moving the constraint to objective function Lagrangian:

$$L(x, \alpha) = x^2 - \alpha(x - b)$$

s.t. $\alpha \ge 0$

Solve:

$$\min_x \max_{\alpha} \ L(x, \alpha)$$
 s.t. $\alpha \geq 0$

Constraint is tight when $\alpha > 0$

Duality

Primal problem:

$$f^* = \min_x x^2$$
s.t. $x \ge b$

Dual problem:

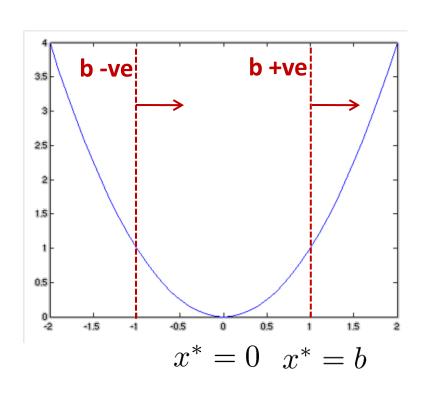
$$f^* = \min_x x^2 \qquad g^* = \min_x \max_\alpha x^2 - \alpha(x - b)$$
 s.t. $x \ge b$ s.t. $\alpha \ge 0$

Weak duality – $g^* < f^*$

For all feasible points
$$\tilde{x}$$
 $g^* \leq g(\tilde{x}) \leq f(\tilde{x})$

Strong duality –
$$q^* = f^*$$
 (holds under KKT conditions)

Lagrange Multiplier – Dual Variables



Solving:
$$\min_x \max_{\alpha} x^2 - \alpha(x-b)$$
 s.t. $\alpha \geq 0$

$$\frac{\partial L}{\partial x} = 0 \qquad \Rightarrow x^* = \frac{\alpha}{2}$$

$$\frac{\partial L}{\partial \alpha} = 0 \qquad \Rightarrow \alpha^* = \max(2b, 0)$$

When α > 0, constraint is tight