
Announcements - Homework

• Homework 1 is graded, please collect at end of 
lecture

• Homework 2 due today

• Homework 3 out soon (watch email)

• Ques 1 – midterm review



HW1 score distribution
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Announcements - Midterm

• When:  Wednesday, 10/20

• Where: In Class

• What:   You, your pencil, your textbook, your notes, 
course slides, your calculator, your good mood :)

• What NOT: No computers, iphones, or anything else 
that has an internet connection.

• Material: Everything from the beginning of the 
semester, until, and including SVMs and the Kernel 
trick
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Recitation Tomorrow!

• Boosting, SVM (convex optimization), 

Midterm review!

• Strongly recommended!!

• Place: NSH 3305 (Note: change from last time)

• Time: 5-6 pm

Rob
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At Pittsburgh G-20 summit …
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Linear classifiers – which line is 
better?
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Pick the one with the largest margin!
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Parameterizing the decision boundary
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w.x + b > 0 w.x + b < 0

Data:Example i (= 1,2,…,n):

w.x = j w(j) x(j)



Parameterizing the decision boundary
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w.x + b > 0 w.x + b < 0



Maximizing the margin
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margin = g = 2a/ǁwǁ

w.x + b > 0 w.x + b < 0

g g

Distance of closest examples 
from the line/hyperplane



Maximizing the margin
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w.x + b > 0 w.x + b < 0

g g
max  g = 2a/ǁwǁ

w,b

s.t. (w.xj+b) yj ≥ a j 

margin = g = 2a/ǁwǁ

Note: ‘a’ is arbitrary (can normalize 
equations by a)

Distance of closest examples 
from the line/hyperplane



Support Vector Machines
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w.x + b > 0 w.x + b < 0

g g

min  w.w
w,b

s.t. (w.xj+b) yj ≥ 1 j 

Solve efficiently by quadratic 
programming (QP)

– Well-studied solution 
algorithms

Linear hyperplane defined by 
“support vectors”



Support Vectors
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w.x + b > 0 w.x + b < 0

g g

Linear hyperplane defined by 
“support vectors”

Moving other points a little 
doesn’t effect the decision 
boundary 

only need to store the 
support vectors to predict 
labels of new points

How many support vectors in 
linearly separable case?

≤ m+1



What if data is not linearly separable?
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Use features of features 
of features of features….

But run risk of overfitting!

x1
2, x2

2, x1x2, …., exp(x1)



What if data is still not linearly 
separable?
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min  w.w + C #mistakes 
w,b

s.t. (w.xj+b) yj ≥ 1 j

Allow “error” in classification

Maximize margin and minimize 
# mistakes on training data

C  - tradeoff parameter

Not QP 

0/1 loss (doesn’t distinguish between 

near miss and bad mistake)



What if data is still not linearly 
separable?
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min  w.w + C Σξj
w,b

s.t. (w.xj+b) yj ≥ 1-ξj j

ξj ≥ 0 j

j

Allow “error” in classification

ξj - “slack” variables 
= (>1 if xj misclassifed)

pay linear penalty if mistake

C  - tradeoff parameter (chosen by 

cross-validation)

Still QP 

Soft margin approach



Slack variables – Hinge loss
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min  w.w + C Σξj
w,b

s.t. (w.xj+b) yj ≥ 1-ξj j

ξj ≥ 0 j

j

Complexity penalization

Hinge loss

0-1 loss

0-1 1



SVM vs. Logistic Regression
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SVM : Hinge loss

0-1 loss

0-1 1

Logistic Regression : Log loss ( -ve log conditional likelihood)

Hinge lossLog loss



What about multiple classes?
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One against all
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Learn 3 classifiers 
separately: 
Class k vs. rest

(wk, bk)k=1,2,3

y = arg max wk.x + bk
k

But wks may not be 
based on the same scale.
Note: (aw).x + (ab) is also 
a solution



Learn 1 classifier: Multi-class SVM
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Simultaneously learn 3 sets of weights

y = arg max w(k).x + b(k)

Margin - gap between correct 
class and nearest other class



Learn 1 classifier: Multi-class SVM
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Simultaneously learn 3 sets of weights

y = arg max w(k).x + b(k)

Joint optimization: wks 
have the same scale.



What you need to know

• Maximizing margin

• Derivation of SVM formulation

• Slack variables and hinge loss

• Relationship between SVMs and logistic regression
– 0/1 loss

– Hinge loss

– Log loss

• Tackling multiple class
– One against All

– Multiclass SVMs
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SVMs reminder
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min  w.w + C Σξj
w,b

s.t. (w.xj+b) yj ≥ 1-ξj j

ξj ≥ 0 j

Hinge lossRegularization

Soft margin approach



Today’s Lecture

• Learn one of the most interesting and exciting 
recent advancements in machine learning

– The “kernel trick”

– High dimensional feature spaces at no extra cost!

• But first, a detour

– Constrained optimization!
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Constrained Optimization
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Lagrange Multiplier – Dual Variables
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Moving the constraint to objective function
Lagrangian:

Solve:

Constraint is tight when a > 0



Duality
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Primal problem: Dual problem:

Weak duality –

For all feasible points

Strong duality – (holds under KKT conditions)



Lagrange Multiplier – Dual Variables
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Solving:
b -ve b +ve

When a > 0, constraint is tight


