
1 Asymptotic Expected Risk of 1NN

In this problem you will investigate the asymptotic expected risk of the 1NN classifier and show
that under certain assumptions, it will be upper-bounded by a constant factor of the Bayes risk.
Consider a classification problem of K classes, and let

θk(x) := Prob.(x is in class k), k ∈ {1, 2, . . . ,K}

denote the true class probabilities given some feature vector x. Given an i.i.d. sample of training
pairs Dn = {(xi, yi)}

n
i=1

drawn from some joint distribution P (x, y), where xi denote the ith
training vector and yi ∈ {1, 2, . . . ,K} denote the corresponding class label, the goal of supervised
learning is to construct a classification rule f̂n(·) from Dn such that the expected risk over the
training sample Dn and an unseen test example (x∗, y∗) ∼ P (x, y)

EDn
[Ex

∗,y∗ [1{f̂n(x∗) 6= y∗}]]

is small. The Bayes rule, denoted as fBayes(·), is defined by the following property:

Ex
∗,y∗ [1{fBayes(x∗) 6= y∗}] ≤ Ex

∗,y∗ [1{f(x∗) 6= y∗}] for any classification rule f,

and the risk of the Bayes rule is called the Bayes risk.

1. What is the Bayes rule for the K-class classification problem? And what is the Bayes risk?
Several notes:

(a) For the Bayes rule, your answer should be in terms of θk(x).

(b) For the Bayes risk, there should be an expectation over x in your answer.

(c) Think about the conditional expectation of the loss given some x.

Ans. We first consider the conditional expectation of the loss given some x
∗ incurred by some

classification rule f , which can be either deterministic or probabilistic. If f is probabilistic,
then

Ey∗ [1{f(x∗) 6= y∗}] =

K
∑

k=1

θk(x
∗)(1 − P (1{f(x∗) = k}))

=

K
∑

k=1

(1 − θk(x
∗))P (1{f(x∗) = k})

≥ 1 − max
k

θk(x
∗). (1)

If f is deterministic, a similar argument shows that this inequality still holds. It is easy to
see that the following rule

arg max
k

θk(x
∗)

achieves the lower bound (1) on the conditional expected loss, and therefore is the Bayes rule.
The Bayes risk then is

Ex
∗ [1 − max

k
θk(x

∗)].

1



2. Let f̂1NN
n (·) denote the 1NN classification rule constructed from Dn. Since this rule depends

on the random training sample Dn, the prediction f̂1NN
n (x∗) it makes on some test vector x

∗

is also random, and we can think about

P (1{f̂1NN
n (x∗) = k}), k ∈ {1, 2, . . . ,K}.

Moreover, if we increase the sample size n while holding fixed the dimension of feature vectors,
we would expect, under reasonable assumptions on the joint distribution P (x, y), that x

∗ and
its nearest neighbor become closer and closer to each other, and so do their class conditional
probabilities. For simplicity, here we assume that as n → ∞,

EDn
[1{f̂1NN

n (x∗) = k}] = P (1{f̂1NN
n (x∗) = k}) → θk(x

∗)

for all k ∈ {1, 2, . . . ,K} and uniformly over all x
∗. Show that

lim
n→∞

EDn
[Ex

∗,y∗ [1{f̂1NN
n (x∗) 6= y∗}]] ≤ 2Ex

∗,y∗ [1{fBayes(x∗) 6= y∗}],

i.e., the asymptotic expected risk of 1NN is no more than two times the Bayes risk. Some
notes:

(a) You may find this fact useful: the solution to the following optimization problem:

min
K

∑

i=1

θ2

i s.t.
K

∑

i=1

θi = C

is θ∗i = C/K for i ∈ {1, 2, . . . ,K}.

(b) Assume it is fine to exchange the limit with the expectation and vice versa.

Ans. Again, we begin by considering the conditional expected risk given some x
∗:

Ey∗EDn
[1{f̂1NN

n (x∗) 6= y∗}] =
K

∑

k=1

EDn
[1{f̂1NN

n (x∗) 6= k}]θk(x∗)

=

K
∑

k=1

P (1{f̂1NN
n (x∗) 6= k})θk(x∗)

=

K
∑

k=1

(1 − P (1{f̂1NN
n (x∗) = k}))θk(x∗).
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Let k∗ := arg maxk θk(x
∗), the class label given by the Bayes rule. Then we have

lim
n→∞

Ey∗EDn
[1{f̂1NN

n (x∗) 6= y∗}]

=

K
∑

k=1

(1 − θk(x
∗))θk(x

∗) by our assumption

= 1 − θk∗(x∗)2 −
∑

k 6=k∗

θk(x
∗)2

≤ 1 − θk∗(x∗)2 −
(1 − θk∗(x∗))2

K − 1
by the property in (2a)

= (1 − θk∗(x∗))

(

K(1 + θk∗(x∗)) − 2

K − 1

)

≤ 2(1 − θk∗(x∗)),

which implies the desired result.1

1This is true only when we can move the limit from outside of the expectation over x
∗ to inside the expectation.

We avoid this technical difficulty by simply assuming we can do so, which is usually true if the joint distribution
P (x, y) satisfies some regularity conditions.
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