1 Asymptotic Expected Risk of 1NN

In this problem you will investigate the asymptotic expected risk of the 1NN classifier and show
that under certain assumptions, it will be upper-bounded by a constant factor of the Bayes risk.
Consider a classification problem of K classes, and let

0r(x) := Prob.(x is in class k), k € {1,2,..., K}

denote the true class probabilities given some feature vector x. Given an i.i.d. sample of training
pairs D,, = {(x;,9;)}/~; drawn from some joint distribution P(x,y), where x; denote the ith
training vector and y; € {1,2,..., K} denote the corresponding class label, the goal of supervised
learning is to construct a classification rule fn() from D,, such that the expected risk over the
training sample D,, and an unseen test example (x*,y*) ~ P(x,y)

Ep, [EX*,y*[l{fn(X*) # y*}]
is small. The Bayes rule, denoted as fB%¢3(.), is defined by the following property:
Eyr [1{fPwes(x*) £y} < Eyx < [1{f(x*) #y*}] for any classification rule f,

and the risk of the Bayes rule is called the Bayes risk.

1. What is the Bayes rule for the K-class classification problem? And what is the Bayes risk?
Several notes:

(a) For the Bayes rule, your answer should be in terms of 0 (x).
(b) For the Bayes risk, there should be an expectation over x in your answer.
(¢) Think about the conditional expectation of the loss given some x.

Ans. We first consider the conditional expectation of the loss given some x* incurred by some
classification rule f, which can be either deterministic or probabilistic. If f is probabilistic,
then
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If f is deterministic, a similar argument shows that this inequality still holds. It is easy to
see that the following rule
arg max O (x")

achieves the lower bound (1) on the conditional expected loss, and therefore is the Bayes rule.
The Bayes risk then is
Ex-[1 — max O (x")].



2. Let f,}LN N(.) denote the INN classification rule constructed from D,,. Since this rule depends
on the random training sample D,,, the prediction fiN N(x*) it makes on some test vector x*
is also random, and we can think about

PA{fINN(x*)=k}), ke {1,2,...,K}.

Moreover, if we increase the sample size n while holding fixed the dimension of feature vectors,
we would expect, under reasonable assumptions on the joint distribution P(x,y), that x* and
its nearest neighbor become closer and closer to each other, and so do their class conditional
probabilities. For simplicity, here we assume that as n — oo,

Ep,[1{fi""(x") = k}] = PA{;"N(x") = k}) — Ok(x")
for all k € {1,2,..., K} and uniformly over all x*. Show that
Tim Ep, [Bee LAYV () £ 57 H) € 2B e [L{FP(x7) £ 7))

i.e., the asymptotic expected risk of 1INN is no more than two times the Bayes risk. Some
notes:

(a) You may find this fact useful: the solution to the following optimization problem:

K K
min ) 67 st Y 6;=C
=1 i=1

is 0 = C/K fori € {1,2,... K}
(b) Assume it is fine to exchange the limit with the expectation and vice versa.

Ans. Again, we begin by considering the conditional expected risk given some x*:
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Let k* := arg maxy, 0 (x*), the class label given by the Bayes rule. Then we have

lim EyEp, [1{f," (x") # y*}]

K
= Z(l — O (x7)) 0k (x*) by our assumption
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which implies the desired result.!

IThis is true only when we can move the limit from outside of the expectation over x* to inside the expectation.
We avoid this technical difficulty by simply assuming we can do so, which is usually true if the joint distribution
P(x,y) satisfies some regularity conditions.



