1 Asymptotic Expected Risk of 1NN

In this problem you will investigate the asymptotic expected risk of the 1NN classifier and show that under certain assumptions, it will be upper-bounded by a constant factor of the Bayes risk. Consider a classification problem of K classes, and let

$$\theta_k(\mathbf{x}) := \text{Prob.}(\mathbf{x} \text{ is in class } k), \ k \in \{1, 2, \dots, K\}$$

denote the true class probabilities given some feature vector \mathbf{x} . Given an i.i.d. sample of training pairs $D_n = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$ drawn from some joint distribution $P(\mathbf{x}, y)$, where \mathbf{x}_i denote the *i*th training vector and $y_i \in \{1, 2, ..., K\}$ denote the corresponding class label, the goal of supervised learning is to construct a classification rule $\hat{f}_n(\cdot)$ from D_n such that the expected risk over the training sample D_n and an unseen test example $(\mathbf{x}^*, y^*) \sim P(\mathbf{x}, y)$

$$\mathbb{E}_{D_n}[\mathbb{E}_{\mathbf{x}^*,y^*}[\mathbf{1}\{\hat{f}_n(\mathbf{x}^*) \neq y^*\}]]$$

is small. The Bayes rule, denoted as $f^{Bayes}(\cdot)$, is defined by the following property:

$$\mathbb{E}_{\mathbf{x}^*,y^*}[\mathbf{1}\{f^{Bayes}(\mathbf{x}^*) \neq y^*\}] \quad \leq \quad \mathbb{E}_{\mathbf{x}^*,y^*}[\mathbf{1}\{f(\mathbf{x}^*) \neq y^*\}] \quad \text{ for any classification rule } f,$$

and the risk of the Bayes rule is called the Bayes risk.

- 1. What is the Bayes rule for the K-class classification problem? And what is the Bayes risk? Several notes:
 - (a) For the Bayes rule, your answer should be in terms of $\theta_k(\mathbf{x})$.
 - (b) For the Bayes risk, there should be an expectation over \mathbf{x} in your answer.
 - (c) Think about the conditional expectation of the loss given some \mathbf{x} .

Ans. We first consider the conditional expectation of the loss given some \mathbf{x}^* incurred by some classification rule f, which can be either deterministic or probabilistic. If f is probabilistic, then

$$\mathbb{E}_{y^*}[\mathbf{1}\{f(\mathbf{x}^*) \neq y^*\}] = \sum_{k=1}^K \theta_k(\mathbf{x}^*)(1 - P(\mathbf{1}\{f(\mathbf{x}^*) = k\}))$$

$$= \sum_{k=1}^K (1 - \theta_k(\mathbf{x}^*))P(\mathbf{1}\{f(\mathbf{x}^*) = k\})$$

$$\geq 1 - \max_k \theta_k(\mathbf{x}^*). \tag{1}$$

If f is deterministic, a similar argument shows that this inequality still holds. It is easy to see that the following rule

$$\arg\max_k \theta_k(\mathbf{x}^*)$$

achieves the lower bound (1) on the conditional expected loss, and therefore is the Bayes rule. The Bayes risk then is

$$\mathbb{E}_{\mathbf{x}^*}[1 - \max_k \theta_k(\mathbf{x}^*)].$$

2. Let $\hat{f}_n^{1NN}(\cdot)$ denote the 1NN classification rule constructed from D_n . Since this rule depends on the random training sample D_n , the prediction $\hat{f}_n^{1NN}(\mathbf{x}^*)$ it makes on some test vector \mathbf{x}^* is also random, and we can think about

$$P(\mathbf{1}\{\hat{f}_n^{1NN}(\mathbf{x}^*) = k\}), \ k \in \{1, 2, \dots, K\}.$$

Moreover, if we increase the sample size n while holding fixed the dimension of feature vectors, we would expect, under reasonable assumptions on the joint distribution $P(\mathbf{x}, y)$, that \mathbf{x}^* and its nearest neighbor become closer and closer to each other, and so do their class conditional probabilities. For simplicity, here we assume that as $n \to \infty$,

$$\mathbb{E}_{D_n}[\mathbf{1}\{\hat{f}_n^{1NN}(\mathbf{x}^*) = k\}] = P(\mathbf{1}\{\hat{f}_n^{1NN}(\mathbf{x}^*) = k\}) \to \theta_k(\mathbf{x}^*)$$

for all $k \in \{1, 2, ..., K\}$ and uniformly over all \mathbf{x}^* . Show that

$$\lim_{n \to \infty} \mathbb{E}_{D_n} [\mathbb{E}_{\mathbf{x}^*, y^*} [\mathbf{1} \{ \hat{f}_n^{1NN}(\mathbf{x}^*) \neq y^* \}]] \leq 2\mathbb{E}_{\mathbf{x}^*, y^*} [\mathbf{1} \{ f^{Bayes}(\mathbf{x}^*) \neq y^* \}],$$

i.e., the asymptotic expected risk of 1NN is no more than two times the Bayes risk. Some notes:

(a) You may find this fact useful: the solution to the following optimization problem:

$$\min \sum_{i=1}^{K} \theta_i^2 \quad \text{s.t. } \sum_{i=1}^{K} \theta_i = C$$

is
$$\theta_i^* = C/K$$
 for $i \in \{1, 2, ..., K\}$.

(b) Assume it is fine to exchange the limit with the expectation and vice versa.

Ans. Again, we begin by considering the conditional expected risk given some \mathbf{x}^* :

$$\mathbb{E}_{y^*} \mathbb{E}_{D_n} [\mathbf{1} \{ \hat{f}_n^{1NN}(\mathbf{x}^*) \neq y^* \}] = \sum_{k=1}^K \mathbb{E}_{D_n} [\mathbf{1} \{ \hat{f}_n^{1NN}(\mathbf{x}^*) \neq k \}] \theta_k(\mathbf{x}^*)$$

$$= \sum_{k=1}^K P(\mathbf{1} \{ \hat{f}_n^{1NN}(\mathbf{x}^*) \neq k \}) \theta_k(\mathbf{x}^*)$$

$$= \sum_{k=1}^K (1 - P(\mathbf{1} \{ \hat{f}_n^{1NN}(\mathbf{x}^*) = k \})) \theta_k(\mathbf{x}^*).$$

Let $k^* := \arg \max_k \theta_k(\mathbf{x}^*)$, the class label given by the Bayes rule. Then we have

$$\lim_{n \to \infty} \mathbb{E}_{y^*} \mathbb{E}_{D_n} [\mathbf{1}\{\hat{f}_n^{1NN}(\mathbf{x}^*) \neq y^*\}]$$

$$= \sum_{k=1}^K (1 - \theta_k(\mathbf{x}^*)) \theta_k(\mathbf{x}^*) \qquad \text{by our assumption}$$

$$= 1 - \theta_{k^*}(\mathbf{x}^*)^2 - \sum_{k \neq k^*} \theta_k(\mathbf{x}^*)^2$$

$$\leq 1 - \theta_{k^*}(\mathbf{x}^*)^2 - \frac{(1 - \theta_{k^*}(\mathbf{x}^*))^2}{K - 1} \qquad \text{by the property in (2a)}$$

$$= (1 - \theta_{k^*}(\mathbf{x}^*)) \left(\frac{K(1 + \theta_{k^*}(\mathbf{x}^*)) - 2}{K - 1}\right)$$

$$\leq 2(1 - \theta_{k^*}(\mathbf{x}^*)),$$

which implies the desired result.¹

¹This is true only when we can move the limit from outside of the expectation over \mathbf{x}^* to inside the expectation. We avoid this technical difficulty by simply assuming we can do so, which is usually true if the joint distribution $P(\mathbf{x}, y)$ satisfies some regularity conditions.