10701 Recitation: Decision Trees
& Model Selection (AIC & BIC)



More on Decision Trees



Building More General Decision Trees

e Build a decision tree (= 2 level) Step by Step.

e Building a decision tree with continuous input
feature.

e Building a quad decision tree.



Building More General Decision Trees

e Build a decision tree (= 2 level) Step by Step.

Next

e Building a decision tree with continuous input
feature.

e Building a quad decision tree.




Information Gain

 Advantage of attribute — decrease in uncertainty
— Entropy of Y before split

Z P(Y =y)log, P(Y = y)

— Entropy of Y after splitting based on X.
* Weight by probability of following each branch

H(Y | X;) = Z P(X;=2)H(Y | X; = z)

= —ZP(X =2)Y P(Y=y|X;=z)loga P(Y =y | X; =1z)
y

e Information gain is difference

I(Y, X;) = H(Y) - H(Y | X;)



How to learn a decision tree

 Top-down induction [ID3, C4.5, CART, ...]

Main loop:

1.
2.

3.

X < the “best” decision attribute for next node
Assign X as decision attribute for node

For each value of X, create new descendant of
node

. Sort training examples to leaf nodes

. If training examples perfectly classified, Then

STOP, Else iterate over new leaf nodes
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Person Hair | Weight | Age | Class
Length | <161 | <40
. Homer| Short| No | Yes M
Marge| Long | Yes | Yes F
Bart| Short| Yes | Yes M
Lisa| Long | Yes | Yes F
Maggie| Long | Yes | Yes F
Abe| Short| No | No M
_ong | Yes | No F
_ong No | Yes M
_ong NO NO M
Comic| Long | No | Yes ?




Entropy(S) =— P logz[ D j — n logz( n j

p+n p+n p+n p+n

Entropy(4F,5M) = -(4/9)log,(4/9) - (5/9)log,(5/9)
= 0.9911

Let us try splitting on
Hair length

Gain(A) = E(Current set)— > E(all child sets)
Gain(Hair Length) = 0.9911 — (3/9 * 0 + 6/9 * 0.9183 ) = 0.3789



Entropy(S) =— P logz[ D j — n logz( n j

p+n p+n p+n p+n

Entropy(4F,5M) = -(4/9)log,(4/9) - (5/9)log,(5/9)

= 0.9911
Let us try splitting on
Weight
V%
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Gain(A) = E(Current set)— > E(all child sets)
Gain(Weight < 161) = 0.9911 — (5/9 * 0.7219 + 4/9 * 0 ) = 0.5900



Entropy(S) =— P logz[ P j — n logz( n
p+n p+n p+n p+n

Entropy(4F,5M) = -(4/9)log,(4/9) - (5/9)log,(5/9)

= 0.9911

Let us try splitting on
Age

£

“ronri Fay,
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- 8>(3/6 = 98:(1/3
1 )~ (3/6 0.91 Ny
Nlog,(3/5) 53 “log, 25,

Gain(A) = E(Current set)— > E(all child sets)
Gain(Age < 40) = 0.9911 — (6/9 * 1+ 3/9 * 0.9183 ) = 0.0183

|



Of the 3 features we had, Weight was best. But
while people who weigh over 161 are perfectly
classified (as males), the under 161 people are
not perfectly classified... So we simply
recurse!

Person Hair Age | Clas
Length <40
Marge | Long Yes | F
Bart | Short Yes | M
Lisa| Long Yes | F
Maggie | Short Yes | F
Selma| Long No | F




Entropy(S) =— P logz( D j — n logz( n j

p+n p+n p+n p+n

Entropy(4F,1M) = -(4/5)log,(4/5) - (1/5)log,(1/5)
= 0.7219

Let us try splitting on
Hair length

Gain(A) = E(Current set)— > E(all child sets)

Gain(Hair Length, Weight < 161) =0.7219 — (1/5* 0+ 3/5*0) =0.7219



Entropy(S) =— P logz( D j — n logz( n j

p+n p+n p+n p+n

Entropy(4F,1M) = -(4/5)log,(4/5) - (1/5)log,(1/5)
= 0.7219

Let us try splitting on
Age

Gain(A) = E(Current set)— > E(all child sets)

Gain(Age, Weight < 161) = 0.7219 — (3/4 * 0.8113 + 1/4 * 0 ) = 0.1134



Of the 3 features we had, Weight was best. But
while people who weigh over 161 are perfectly
classified (as males), the under 161 people are
not perfectly classified... So we simply
recurse!

This time we find that we can split on
Hair length and we done.!

/ Hair Length \

i [

Male Female
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Hair | Weight | Age | Class
Length | <161 | <40
Short| No | Yes M

\B)
®
e ;\}

(o) Abe|Short| No | No | M
ong| Yes | No| F
_ong No | Yes M
_oNg NO NO M
&% Comic| Long| No |Yes| 2




Hair | Weight | Age | Class | Count
Length | <161 | <40
Short| No | Yes M 1
3
Short| Yes | Yes M 1
Short| No No M 1
Long | Yes | No F 1
_oNng No | Yes M 1
_ong No NoO M 1




Building More General Decision Trees

e Build a decision tree (= 2 level) Step by Step.

Next

e Building a decision tree with continuous input
feature.

e Building a quad decision tree.




Person Hair | Weight | Age | Class
Length| <161 | <40
(.) Homer| O0” No |Yes| M
Marge| 10~ Yes | Yes F
Bart| 2" Yes | Yes M
Lisa| 67 Yes | Yes F
Maggie| 4”7 Yes | Yes F
Abe| 1”7 | No |No| M
Selma| 8” Yes | No F
Otto| 107 No | Yes M
Krusty| 67" NoO NoO M




Real-Values input

What should we do if some of the input features are real-
valued?

“One branch for each numeric
value” idea:

oo

pehares = 01771

modetyear = 70 |[moaenear = 71 [ mogenyear= 1z | I | =7 =75 | mocelyear = 70 | mocelyear = 77 | modetyesr = 78 | modenesr = T3 (|modetyear = 80 || modelysar = 81 || modelyear = 82
40 a1 10 2 20 11 [ - 04

= Fredict bad

Hopeless: with such high branching factor will shatter
the dataset and over fit

After pruning, it would likely to end up with a single
root node.



A better idea: thresholded splits

e Suppose X is real valued.
e Define IG(Y/X:t)as H(Y) - H(Y/X:t)

e Define H(Y/X:t) =
HYIX <t) PIX < t) + HIYIX >=t) P(X >=t)

o /G(Y/X:t)is the information gain for predicting Y if all
you know is whether X is greater than or less than ¢

e Then define IG*(Y/X) = max, IG(Y/X:t)
e For each real-valued attribute, use /G*(Y/X)
for assessing its suitability as a split
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Entropy(4F,5M) = -(4/9)log,(4/9) - (5/9)log,(5/9)

= 0.9911

To increase the complexity of a decision tree by the same amount for any
decision, only binary splits of the form hair —length < H vs. hair —length = H

are allowed.
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Example

Class

Gain(H=1) = 09911 — (é % 0 +§ 1) (1)
= 0.1022 (2)

Gain(H=12) = 09911 — (g % 0+ g % 0.9852) (3)
= 0.2248 (4)

Gain(H =4) = 0.9911 — (% (5)
— 0.3789 (6)

Gain(H =6) = 0.9911 — (% % 0.8113 + g % 0.9710) (7)
= 0.0911 (8)

Gain(H=8) = 09911 — (g % 0.9183 + g % 0.9183) (9)
= 0.0728 (10)

Gain(H =10) = 09911 — (g X 0.9852 +g 1) (1)
)

= 0.0026 (12



However,...

Gain(Hair Length <4”) =0.9911 — (3/9 * 0 + 6/9 * 0.9183 ) =
0.3789

Gain(Weight < 161) = 0.9911 — (5/9 * 0.7219 + 4/9 * 0 ) = 0.5900
Gain(Age < 40) = 0.9911 — (6/9 * 1 + 3/9 * 0.9183 ) = 0.0183



Of the 3 features we had, Weight was best. But
while people who weigh over 160 are perfectly
classified (as males), the under 160 people are

not perfectly classified... So we simply

recurse!

Person

Marge

Age
<40

Clas

Bart

Yes

Lisa

Yes

Maggie

Yes

Selma

Yes

No

mim|m|<| M




Example

Class

Entropy(4F,1M) = -(4/5)log,(4/5) - (1/5)log,(1/5) = 0.7219

Gain(Hair Length <4, Weight < 161)=0.7219 - (1/5* 0+ 4/5* 0 ) =
0.7219

Gain(Age, Weight < 161) = 0.7219 — (3/4 * 0.8113 + 1/4 * 0 ) = 0.1134



Of the 3 features we had, Weight was best. But
while people who weigh over 160 are perfectly
classified (as males), the under 160 people are
not perfectly classified... So we simply
recurse!

This time we find that we can split on
Hair length, and we are done!

yes no

/ Hair Length <4? Male

; %%?

Male Female




Attributes with Many Values

Problem:
e If attribute has many values, Gain will select it

e Imagine using Date = Jun_3_1996 as attribute

One approach: use GainRatio instead

Gain(S, A)

GainRatio( S, A) =
ainRatio(S, A) SplitInformation(S,A)
| . ¢ |S¢‘ ‘Stl
olit] wats A)= - X log;
SplitIn formation(S, A) 2 S| 082 S|

where S; is subset of S for which A has value v;




Building More General Decision Trees

e Build a decision tree (= 2 level) Step by Step.

e Building a decision tree with continuous input

feature.

e Building a quad decision tree.




Decision Tree more generally...

X1 2 0.5, X5 = {a,b}or{c,d} .

Features can be discrete,
continuous or categorical

Each internal node: test
some set of features {X}

Each branch from a node:
selects a set of value for

{Xi}
Each leaf node: predict Y



Person Hair | Weight | Class
Length
Homer| 0" 250 M
Marge| 10" 150 F
Bart| 27 90 M
Lisa| 67 /8 F
Maggie| 4~ 20 F
Abe| 17 | 170 | M
Selma| 8” | 160 | F
Otto| 10” | 180 | M
Krusty| 67 | 200 | ™

Hair length:
0-2 Short

3-6 Medium
>/ Long

Weight:
0-100 Light
100-175
Normal

>175 Heavy



Person Hair Weight | Class
Length
Homer S Heavy M
Marge| L Normal F
Bart| S _ight M
Lisa| M _ight F
aggie M _ight F
Abe| S Normal | M
. Selma| L Normal F
Otto| L Heavy M
.Krusty M Heavy M

Hair length:
0-2 Short
3-6 Medium
>/ Long

Weight:
0-100 Light
100-175
Normal

>175 Heavy



Entropy(S)z—pp logz[ D j — n logz( n j

+n p+n p+n p+n

Entropy(4F,5M) = -(4/9)log,(4/9) - (5/9)log,(5/9)

= 0.9911
. (M, L}
I\SIhort’l Short, Light {Ili/'l, lll_t} {Normal, Let us try splitting on Hair
_ and Weight: {Light} vs.

{Normal, Heavy}




{M, L} * {Normal, Heavy}
Let us try re-splitting on Hair
length: M vs. L

and Weight: Normal vs. Heavy




Entropy(S) =— P logz[ D j — n logz( n j

p+n p+n p+n p+n

Entropy(4F,5M) = -(4/9)log,(4/9) - (5/9)log,(5/9)
= 0.9911

M, L}

Short,  “Short, Light ~ {M L} Let us try splitting on Hair

{Normal, / Light length {S} vs. {M, L}
\ and Weight: {Light} vs.
F% i {Normal, Heavy}
E Femalel=

L, Normal

Male Male P

.v.ﬂg

Female Male Male



Entropy(S)z—pp logz[ D j — n logz( n j

+n p+n p+n p+n

Entropy(4F,5M) = -(4/9)log,(4/9) - (5/9)log,(5/9)

= 0.9911
Short, Short Long, Long, " :
: : ) : Weight >161 Let us try splitting on Hair
Weight >161 Weight >161 Weight < 161 \ length {S} vs. {M. L}

e
e
il
|

\

and Weight: {Light} vs.
{Normal, Heavy}

M, L} Female

{Normal,

Short,  “ ghort, Light
Male {Normal’ f & Heavy}

Heavy} /
»

) |




Model and Selection: AIC & BIC



Bias, Variance, and Model Complexity

eBias-Variance trade-off
again

2 il eGeneralization: test
z sample vs. training sample
= performance
'l'L';Lﬁ:ing Sarnple . .
— Training data usually
Low High . . .
Model Complexity monotonically increasing

Figure 7.1: Behavior of test sample and training sam- performa nce Wlth mOdeI
ple error as the model complexity is varied. CompIeXIty



Measuring Performance

target variable Y
*Vector of inputs ¥

N

*Prediction model f (x)

*Typical Choices of Loss function




Generalization Error

Test error aka. Generalization error

Note: This expectation averages anything that is random, including the
randomness in the training sample that it produced

Training error

— average loss over training sample
— not a good estimate of test error (next slide)



Training Error

*Training error - Overfitting
— not a good estimate of test
error
— consistently decreases with
model complexity S AT—
— drops to zero with high Low
enough complexity
Figure 7.1: Behavior of test sample and training sam-

ple error as the model complexity is varied.

High DBias Low Bias
High Variahce

Low Variance
-

....... —

Test Samp

Prediction Error

Model Complexity



Categorical Data

esame for categorical

Test Error again:

responses
Err=E[LG, pO))|

P (X)=pr(G=k|X)
G ( X ) = arg max, p, (X ) Training Error again:

*Typical Choices of Loss
functions:




Loss Function for General Densities

* For densities parameterized by theta:

e Log-likelihood function can be used as a loss-
function

Pr a) (Y) densityof Y with predictor X



Two separate goals

Model selection:

— Estimating the performance of different models in order to choose the
(approximate) best one

Model assessment:

— Having chosen a final model, estimating its prediction error (generalization
error) on new data

|deal situation: split data into the 3 parts for training, validation (est.
prediction error+select model), and testing (assess model)

Typical split: 50% / 25% / 25%

Remainder of the chapter: Data-poor situation

=> Approximation of validation step either analytically (AIC, BIC, MDL,
SRM) or by efficient sample reuse (cross-validation, bootstrap)



Bias-Variance Decomposition
Y=f(X)+e, E(g)=0, Var(¢)=0

* Then for an input point X = X, using unit-square loss
and regression fit:

e e
o7 4B ()~ £ ()] 4 E[ (1)~ F (1]

= o2 + Bias[ f (XO)]2 +var[ f (XO)]

2

Irreducible Bias”2 Variance
Error
variance of the Amount by which average Expected deviation of
target around estimate differs from the true fA around its mean
the true mean mean




Bias-Variance Decomposition

Err(x,) =0, + Bias[ f (xo)]2 +Var[ f (xo)}
kNN: Err(x,) =07 q{f (xo)—%zk: f (x(,))}2 +o0,’/k

Linear Model Fit: fp (X) =X

Err(x,) =02 +| f(x,)-Ef,(x ]+Hh [ o2
Whereh(xo):(x X) X'y



Bias-Variance Decomposition
Linear Model Fit: fp (X) = ,bA’TX

Err(x,) =0 +[ f(x)~Ef, (%) ] +[n(x ) o
where h(x,)= (XT X )_1 X'y ... N-dim weight vector

average over sample values Xx. :

iZN:Err(x)—c72+i
N 45 YN

[y

[ f(x)—Ef (x )]2 +-—0 ... in-sample error

&

M=

Z|U

=1

Model complexity is directly related to the number of
parameters p



Bias-Variance Decomposition

N

Err(x,)=07+ Bias[f (xo)]2 +Var[ f (XO)J

For ridge regression and other linear models, variance same as before, but
with diff’t weights.

Parameters of the best fitting linear approximation

i =argm%nE(f (X)—,BTX)2

Further decompose the bias:
3 2 T 2 T T 2
EXO[ f (XO) o Efa(XO)] — EXO[ f (XO) _ﬂ* XO] + EXO [IB* XO o EﬂaXO]
= Ave [Model Bias ]* + Ave [Estimation Bias ]’

Least squares fits best linear model -> no estimation bias
Restricted fits -> positive estimation bias in favor of reduced variance



Optimism of the Training Error Rate

e Typically: training error rate < true error

e (same data is being used to fit the method
and assess its error)

T:ﬁil'(yi» F(0)) < Er=g[L(Y.F(x))]

— —

overly optimistic



Optimism of the Training Error Rate

Err ... kind of extra-sample error: test features don’t need to coincide with
training feature vectors

Focus on in-sample error:

new .
Y .. observe N new response values at each of training points X, 1=1,2, ...,N

for squared error 0-1 and other loss functions: 2 A
op :WZCov(yi, ;)
=1

The amount by which err underestimates the true error depends on how strongly y. affects

its own prediction.



Optimism of the Training Error Rate

The harder we fit the data, the greater
Cov(Y,,y; will be, thereby increasing the
optimism.

e For linear fit with d indep inputs/basis funcs:
2

Err, =E, (efT ) +—do;
N\
— optimism 4inearly with # d of basis functions
— Optimism ¥Yas training sample size 4



Optimism of the Training Error Rate

* Ways to estimate prediction error:

— Estimate optimism and then add it to training error rate

e AICBIC, and others work this way, for a special class of estimates
that are linear in their parameters
— Direct estimates of the sample error
 Cross-validation, bootstrap Err

e Can be used with any loss function, and with nonlinear, adaptive
fitting techniques



Estimates of In-Sample Prediction Error

e General form of the in-sample estimate:

_ with estimate of optimism
2

e For linear fit and withErr =E , (e )+Wda

A 2 . . . .
o ... estimate of noise variance, from mean-squared error of low-bias model

&

d... # of basis functions

N... training sample size



Estimates of In-Sample Prediction Error

e Similarly: Akaike Information Criterion (AIC)

— More applicable estimate of  Eprwhen log-
likelihood function is used

Pr, (Y )... family density for Y (containing the true density)

N

6... ML estimate of &

loghkzi lOg PI'é (yI ) Maximized log-likelihood due to ML
i=1

estimate of theta



AlC

For N — oo: —2E[logPré (Y )} ~ —%E[loglik]JrZ%

For example, for logistic regression model, using binomial log-likelihood:

To use AIC for model selection: choose the model giving smallest AIC over the set of
models considered.

f; (X)... set of models, «... tuning parameter

err (@)... training error, d (@)... # parameters



AlC

e Function AIC(a) estimates test error curve

e If basis functions are chosen adaptively with

d<p inputs: N
ZCOV(yi, yl) = dOi
=1

. no longer holds => optimism exceeds
(2d /N)o?

. effective number of parameters fit > d



Using AIC to select the # of basis functions

e Input vector: log-periodogram of vowel; Quantized to 256 uniformly
spaced f

e Linear logistic regression model
M
e Coefficient functions(f)=> h,(f)e,
— Expansion of M spline basis functions

— For any M, a basis of natural cubic splines is used for the
knoty chosen uniformly over the range of frequencies, i.e.

e AIC approximatel\firif¥és ¥rr(M) for both entropy
and 0-1 loss




Using AIC to select the # of basis functions

Log-likelihood Loss 0-1 Loss
o EE
™ — Train =
—  Tast
— 3
= i [}
- g
o a &
2 5 o
g 2 - I _
ERREN £ <
E 7 Ilhg D i E. h
\QE8=|§]!"’D_ =
i o = . .
S 7 N, = Approximation does not
2 4 8 16 32 64 128 2 4 8 15 32 64 128 hOld, in general, for 0-1
Murmber of Basis Functions Mumber of Basis Functions case but |t does o) k
) .N.

(Exact only for linear

i - 4 models w/ additive
omnre (.4 AITC wused for . [ selection  for
lgure .4 AIC wsed for model selection  for  goee and sq err loss)

the phoneme recognition erample of Section 5.2.3,



Effective Number of Parameters

¥

Y,
Y= . Vector of Outcomes, similarly for predicitons

Yn

)A/ = Sy Linear fit (e.g. linear regression, quadratic shrinkage — ridge, splines)

S... Nx N matrix, depends on input vector x, but not on y,

d(s) is the correct d for C, -



Bayesian Approach and BIC

e Like AIC used in when fitting by max log-likelihood

Bayesian Information Criterion (BIC):

Assuming Gaussian model : o~ known,

—2-loglik > (y,- f(x))’ /0% =N-err /o

N — d
then BIC = —[err + (loeN)-— &~
en 02[ (log )N .1

g

BIC proportional to AIC except for log(N) rather than factor of
2. For N>e? (approx 7.4), BIC penalizes complex models more
heavily.



BIC Motivation

Given a set of candidate models M, _,m=1K M and model parameters &_
Posterior probability of a given model: Pr(M_|Z) o« Pr(M_)-Pr(Z| M)
Whel#represents the training data {X., y.},'
To compare two models, form the posterior odds:

Pr(M,, |Z) _Pr(M,) Pr(Z|M,)

Pr(M, [Z) Pr(M,) Pr(Z|M,)
If odds > 1, then choose model m. Prior over models (left half) considered

constant. Right half, contribution of data (Z) to posterior odds, is called
the Bayes factor BF(Z).

Need to approximate Pr(Z|M,,). Various chicanery and approximations
(pp. 207) gets us BIC.

Can est. posterior from BIC and compare relative merits of models.




BIC: How much better is a model?

e But we may want to know how various models stack up (not just ranking) relative
to one another:

e Once we have the BIC:

. Denhomin(?tlor normalizes the result and now we can assess the relative merits of
each mode
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