
1 Comparison of Machine Learning Algorithms [Jayant, 20 points]

In this problem, you will review the important aspects of the algorithms we have learned about in class. For
every algorithm listed in the two tables on the next pages, fill out the entries under each column according to
the following guidelines. Turn in your completed table with your problem set. [≈ 1

2 point per entry]

Guidelines:

1. Generative or Discriminative – Choose either “generative” or “discriminative”; you may write “G”
and “D” respectively to save some writing.

2. Loss Function – Write either the name or the form of the loss function optimized by the algorithm
(e.g., “exponential loss”).

3. Decision Boundary / Regression Function Shape – Describe the shape of the decision surface
or regression function, e.g., “linear”. If necessary, enumerate conditions under which the decision
boundary has different forms.

4. Parameter Estimation Algorithm / Prediction Algorithm – Name or concisely describe an
algorithm for estimating the parameters or predicting the value of a new instance. Your answer should
fit in the provided box.

5. Model Complexity Reduction – Name a technique for limiting model complexity and preventing
overfitting.
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2 Programming – Adaboost [Rob Hall, 20 points]

The goal of this question is to implement the adaboost algorithm for a classification problem, where the
“weak learners” are decision stumps. Our data consist of X ∈ Rn×p matrix of covariates, and a response
vector y ∈ {−1,+1}n.

A decision stump is defined by:

h(a,d,j)(x) =

{
d if xj ≤ a
−d o/w

Where a ∈ R, j ∈ {1 . . . p}, d ∈ {−1,+1}. Here x ∈ Rp is a vector, and xj is the jth coordinate.

The data for this assignment may be found at: http://www.cs.cmu.edu/~aarti/Class/10701/hws/hw3-data.
tar.gz . It consists of both a training and testing set of data. Each consists of 1000 examples. There are
25 real valued features for each example, and a corresponding y label.

1. [10 points] Give a matlab program which takes as input: the data along with a set of weights (i.e.,
{(xi, yi, wi)}ni=1, where wi ≥ 0 and

∑n
i=1 wi = 1), and returns the decision stump which minimizes the

weighted training error. Note that this requires selecting both the optimal a, d of the stump, and also
the optimal coordinate j.

The output should be a pair (a?, d?, j?) with:

`(a?, d?, j?) = min
a,d,j

`(a, d, j) = min
a,d,j

n∑
i=1

wi1{ha,d,j(xi) 6= yi}

For full points, your approach should run in time O(pn log n) or better (Hint: you may assume that
built in sorting routines will sort a list of length m in time O(m logm)). Remember to include a proof
of correctness of your algorithm as well as an analysis of its running time.

2. [8 points] Give a matlab program which implements AdaBoost, and uses decision stumps as weak
learners. Use your decision stump program from above as a subroutine.

3. [2 points] Run your AdaBoost loop for 250 iterations on the data set, and plot the training error and
testing error as a function of iteration number.

3 SVM [Min Chi, 20 points]

1. [5 points] Figure 1 (at the end of this problem) plots SVM decision boundries resulting from using
different kernels and/or different slack penalties. In Figure 1, there are two classes of training data,
with labels yi ∈ {−1, 1}, represented by circles and squares respectively. The SOLID circles and
squares represent the Support Vectors. Determine which plot in Figure 1 was generated by each of the
following optimization problems: (Note that there are 6 plots, but only 5 problems, so one plot does
not match any of the problems)

(a)

min
1

2
w ·w + C

n∑
i=1

ξi

s.t. ∀i = 1, · · · , n:
ξi ≥ 0
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(w · xi + b)yi − (1− ξi) ≥ 0
and C = 0.1.

(b)

min
1

2
w ·w + C

n∑
i=1

ξi (1)

s.t. ∀i = 1, · · · , n:
ξi ≥ 0
(w · xi + b)yi − (1− ξi) ≥ 0
and C = 1.

(c)

max

n∑
i=1

αi −
1

2

∑
i,j

αiαjyiyjK(xi,xj) (2)

s.t.
∑n

i=1 αiyi = 0;
αi ≥ 0,∀i = 1, · · · , n;
where K(u,v) = u · v + (u · v)2.

(d)

max

n∑
i=1

αi −
1

2

∑
i,j

αiαjyiyjK(xi,xj) (3)

s.t.
∑n

i=1 αiyi = 0;
αi ≥ 0,∀i = 1, · · · , n;

where K(u,v) = exp(−‖u−v‖
2

2 ).

(e)

max

n∑
i=1

αi −
1

2

∑
i,j

αiαjyiyjK(xi,xj) (4)

s.t.
∑n

i=1 αiyi = 0;
αi ≥ 0,∀i = 1, · · · , n;
where K(u,v) = exp(− ‖ u− v ‖2).

2. [3 points] Consider the linear SVM with slack penalties:

min
1

2
w ·w + C

n∑
i=1

ξi (5)

s.t. ξi ≥ 0 and (w · xi + b)yi − (1− ξi) ≥ 0 for all i = 1, · · · , n;

Indicate which of the following statements will hold as we increase the constant C from some starting
value. Use ‘True’ if the statement holds in all circumstances; ‘False’ if the statement never holds; and
‘Possible’ if the statement holds in some cases but not others.

(a) [1 point] b will not increase.

(b) [1 point] more points will be misclassified.
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(c) [1 point] the margin will not increase.

3. [12 points] Consider the problem of separating the set of training vectors belonging to two separate
classes. Our training data is of the form {(xi, yi)} where the feature vectors xi ∈ Rm and the class
label yi ∈ {−1, 1}.

As mentioned in the lecture, if the training data is not linearly separable (i.e., by a decision rule
sign(w · x + b) for some w, b), we need to formulate the problem with slack variables {ξi}, 1 ≤ i ≤ n.
Moreover, the SVM classifier with the largest margin is obtained by solving the dual problem:

L(w, b, α, ξ, β) =
1

2
w ·w + C

n∑
i=1

ξi −
n∑

i=1

αi[(w · xi + b)yi − (1− ξi)]−
n∑

i=1

βiξi (6)

where C is a constant, αi, βi ≥ 0,∀i are the Lagrange multipliers, and ξi ≥ 0 are the slack variables.

(a) [2 points] Assume that n = 4 and x is two-dimensional < x1i , x
2
i >: < 2, 2 >,< 2.5, 2.5 >,<

5, 5 >,< 7, 7 >. We now train SVM with equation 6. Show that for any labeling y of the four
training examples, the optimal parameter vector ŵ = (ŵ1, ŵ2) has the property that ŵ1 = ŵ2.

(b) [5 points] Consider training an SVM with slack variables, but with no bias variable (which means
b = 0). We will use a kernel K(u,v) with the property that for any two points u and v in the
training set, −1 < K(u,v) < 1. Furthermore, K(u,u) < 1. There are n points in the training
set, Show that if the constant C is chosen such that C < 1

n−1 , then all of the dual variables αi

are non-zero (i.e., all points in the training set become support vectors).

(c) [5 points] Consider the kernel:

K(u,v) = u · v + 4(u · v)2 (7)

where the vectors u and v are 2-dimensional. This kernel is equal to an inner product φ(u) · φ(v)
for some definition of φ. What is the function φ?
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Figure 1: Induced Decision Boundaries
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4 Hierarchical Clustering [Leman, 20 points]

In class you learned about bottom-up hierarchical clustering (a.k.a. agglomerative clustering), the basic
algorithm of which is:

1. Start with each point in a cluster of its own

2. Until there is only one cluster

(a) Find the closest pair of clusters

(b) Merge them

3. Return the tree of cluster-mergers

To turn the above algorithm into a definite procedure, one needs to be able to quantify how close two
clusters are. In class, you also learned several methods that define the distance between two clusters, such
as Single-Link, Complete-Link, Average-Link, etc.

4.1 An alternative distance metric

In this problem you will anlayze an alternative approach to quantify the distance between two disjoint
clusters, proposed by Joe H. Ward in 1963. We will call it Ward’s metric.

Ward’s metric simply says that the distance between two disjoint clusters, X and Y , is how much the sum
of squares will increase when we merge them. More formally,

∆(X,Y ) =
∑

i∈X∪Y
‖~xi − ~µX∪Y ‖2 −

∑
i∈X
‖~xi − ~µX‖2 −

∑
i∈Y
‖~xi − ~µY ‖2 (8)

where µi is the centroid of cluster i and xi is a data point in a give cluster. Here, ∆(X,Y ) can be thought as
the merging cost of combining clusters X and Y into one cluster. That is, in agglomerative clustering those
two clusters with the lowest merging cost is merged using the Ward’s metric as a closeness measure.

1. [5 points] Can you reduce the formula in Equation 1 for ∆(X,Y ) to a simpler form? Give the
simplified formula. (Please show all your work including the intermediate steps.) Hint: Your formula
should be in terms of the cluster sizes (lets denote them as nX and nY ) and the distance ‖ ~µX − ~µY ‖2
between cluster centroids µX and µY only.

2. [3 points] Give an interpretation for Ward’s metric. What do you think it is trying to achieve? Hint:
The simplified formula from above will be helpful to answer this part.

3. [5 points] Assume that you are given two pairs of clusters P1 and P2. The centers of the two clusters in
P1 is farther apart than the centers of the two clusters in P2. Using Ward’s metric, does agglomerative
clustering always choose to merge the two clusters in P2 (those with less ‘distance’ between their
centers)? Why (not)? Justify your answer with a simple example.

Extra credit: [3 points] In clustering it is usually not trivial to decide what is the right number of clusters
the data falls into. Using Ward’s metric for agglomerative clustering, can you come up with a simple heuristic
to pick the number of clusters k?
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4.2 Efficient updates of the closeness matrix

In class we discussed how the closeness matrix for hierarchical agglomerative clustering needs to be updated
after each step. The näıve way of doing this would be to compute the distances between the to-be-merged two
clustersX and Y and the other clusters from scratch based on the individual data points in the clusters.

1. [4 points] Suppose we want to come up with a more efficient update algorithm that can compute
the new closeness matrix using only the entries from the current closeness matrix, that is, without
having to access the individual data points in the clusters. For which of the following methods can we
achieve this goal? 1) Single-Link, 2) Complete-Link, 3) Average-Link, 4) Ward’s metric. Explain your
reasoning.

2. [3 points] If the computation is not possible based on the current closeness matrix alone for some of
the methods above, could you make it possible by storing a little extra information about each cluster?
Please state clearly what extra information should be stored for which method.

5 K-means [TK, 20 points]

Let X := {x1,x2, . . . ,xn} be our sample points, and K denote the number of clusters to use. We represent
the cluster assignments of the data points by an indicator matrix γ ∈ {0, 1}n×K such that γik = 1 means

xi belongs to cluster k. We require that each point belongs to exactly one cluster, so
∑K

k=1 γik = 1. The
K-means method estimates γ by minimizing the following measure of distortion:

J(γ,µ1,µ2, . . . ,µK) :=

n∑
i=1

K∑
k=1

γik‖xi − µk‖2,

where ‖ ·‖ denotes the vector 2-norm. The most popular algorithm for minimizing J is due to Lloyd1 (1957),
which alternates between estimating γ and re-computing µk’s:

� Initialize µ1,µ2, . . . ,µK , and let C := {1, . . . ,K}.

� While the value of J is still decreasing2, repeat the following:

1. Determine γ by

γik ←

{
1, ‖xi − µk‖2 ≤ ‖xi − µk′‖2, ∀k′ ∈ C,
0, otherwise.

Break ties arbitrarily.

2. Recompute µk using the updated γ:
For each k ∈ C, if

∑n
i=1 γik > 0 set

µk ←
∑n

i=1 γikxi∑n
i=1 γik

.

Otherwise, remove k from C.

1. [5 points] Show that Lloyd’s algorithm stops in a finite number of iterations. (Hint: How many different
values can γ take?)

1Lloyd, S. P. (1957). “Least square quantization in PCM”. Bell Telephone Laboratories Paper.
2This stopping condition is slightly different from the one in Lloyd’s algorithm: stop when γ remains the same.
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2. [5 points] Let x̄ denote the sample mean. Consider the following three quantities:

Total variation: V (X) :=

∑n
i=1 ‖xi − x̄‖2

n
.

Within-cluster variation: Vk(X) :=

∑n
i=1 γik‖xi − µk‖2∑n

i=1 γik
.

Between-cluster variation: Ṽ (X) :=

K∑
k=1

(∑n
i=1 γik
n

)
‖µk − x̄‖2.

What is the relation between these three quantities? Based on this relation, show that K-means can
be interpreted as minimizing a weighted average of with-in cluster variations while approximately
maximizing the between-cluster variation. Note that the relation may contain an extra term that does
not appear above.

3. [5 points] Instead of the squared Euclidean distance, we now use the Manhattan distance, denoted by
‖ · ‖1, as the measure of distortion:

J1(γ,µ1,µ2, . . . ,µK) :=

n∑
i=1

K∑
k=1

γik‖xi − µk‖1.

We minimize J1 by a variant of the Lloyd’s algorithm:

� Initialize µ1,µ2, . . . ,µK , and let C := {1, . . . ,K}.

� While the value of J1 is still decreasing, repeat the following:

1. Determine γ by

γik ←

{
1, ‖xi − µk‖1 ≤ ‖xi − µk′‖1, ∀k′ ∈ C,
0, otherwise.

Break ties arbitrarily.

2. Recompute µk using the updated γ:
For each k ∈ C, if

∑n
i=1 γik > 0 set

µk ← ?

Otherwise, remove k from C.

Fill in the missing update rule for µk such that the algorithm produces a sequence of decreasing
objective values unless a local minimum is reached. Note that

� Answers may not be unique.

� The following fact may be useful. Let {r1, r2, . . . , rn} be n real numbers. The solution to the
minimization problem

min
x

n∑
i=1

|x− ri|

is the median of {r1, r2, . . . , rn}.

4. [5 points] Show that the minimum of J is a non-increasing function of K, thereby conclude that it
makes no sense to choose the number of clusters K by minimizing J .
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