
10-701/15-781, Machine Learning: Homework 2

Aarti Singh
Carnegie Mellon University

� The assignment is due at 10:30 am (beginning of class) on Wed, Oct 13, 2010.

� Separate you answers into five parts, one for each TA, and put them into 5 piles at the table in front
of the class. Don’t forget to put both your name and a TA’s name on each part.

� If you have question about any part, please direct your question to the respective TA who designed
the part (however send your email to 10701-instructors@cs list).

1 Linear Regression [Leman, 20 points]

Assume that there are n given training examples (X1, Y 1), (X2, Y 2), . . . , (Xn, Yn), where each input data
point Xi has m real valued features. The goal of regression is to learn to predict Y from X.

The linear regression model assumes that the output Y is a linear combination of the input features X plus
noise terms ϵ from a given distribution with weights given by β.

We can write this in matrix form by stacking the datapoints as the rows of a matrix X so that xij is the
j-th feature of the i-th datapoint. Then writing Y , β and ϵ as column vectors, we can write the matrix
form of the linear regression model as:

Y = Xβ + ϵ

where

Y =

 Y1

...
Yn

 , ϵ =

 ϵ1
...
ϵn

 , β =

β1

...
βm

 , and X =


X11 X12 . . . X1m

X21 X22 . . . X2m

...
...

. . .
...

Xn1 Xn2 . . . Xnm


Linear regression seeks to find the parameter vector β that provides the best fit of the above regression
model. One criteria to measure fitness, is to find β that minimizes a given loss function J(β).

In class, we have shown that if we take the loss function to be the square-error, i.e.:

J(β) =
∑
i

(Yi −XT
i β)

2 = (Xβ − Y )T (Xβ − Y )

Then
β̂ = (XTX)−1XTY

Moreover, we have also shown that if we assume that ϵ1; . . . ; ϵN are IID and sampled from the same
zero mean Gaussian that is, ϵi ∼ N (0, σ2), then the least square estimate is also the MLE estimate for
P (Y |X;β).

Now, let Ŷ denote the vector of predictions using β̂. If we were to plug in the original training set X:

Ŷ = Xβ̂ = X(XTX)−1XTY

As mentioned above, β̂, also minimizes the sum of squared errors:

SSE =
n∑

i=1

(Yi − Ŷi)
2
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1. [7 points] Robust Linear Regression When we perform least squares linear regression, we make
certain idealized assumptions about the vector of errors ϵ, namely, that it is distributed N (0, σ2). In
practice departures from these assumptions occur. Particularly, in cases where the error distribution
is heavier tailed than the Normal distribution (i.e. has more probability in tails than the Normal), the
least square loss is sensitive to outliers and hence robust regression methods are of interest.

The problem with the least square loss in the existence of outliers (i.e. when the noise term ϵi can be
arbitrarily large), is that it weights each observation equally in getting parameter estimates. Robust
methods, on the other hand, enable the observations to be weighted unequally. More specifically,
observations that produce large residuals are down-weighted by a robust estimation method.

In this problem, you will assume that ϵ1; . . . ; ϵm are independent and identically distributed according
to a Laplacian distribution (rather than according to N (0, σ2)). That is, each ϵi ∼ Laplace(0, b) =
1
2bexp(−

|ϵi|
b ).

(a) [4 points] Provide the loss function JLaplace(β) whose minimization is equivalent to finding the
MLE of β under the above noise model.

(b) [3 points] Why do you think that the above model provides a more robust fit to data compared
to the standard model assuming Gaussian distribution of the noise terms?

2. [7 points] Regularization

When the number of features m is much larger than the number of training instances n (i.e. m ≫ n),
the matrix XTX is not full rank and thus can not be inverted. Therefore, instead of minimizing J(β)
we minimize the following loss function:

JR(β) =
∑
i

(Yi −XT
i β)

2 + λ
M∑
j=1

β2
j = (Xβ − Y )T (Xβ − Y ) + λ∥β∥2 (1)

We have seen in class that the solution of the above formulation is β̂ = (XTX + λI)−1XTY , and for
a proper value of λ, (XTX + λI) is full rank and can be inverted. So for each λ, we have a solution.
In other words, λ traces out a path of solutions.

In this problem you will study the interpretation of regularization.

(a) [4 points] Instead of viewing β as an unknown deterministic parameter, we can consider β as a
random variable whose value is also unknown. In this setting, we then specify a prior distribution
P (β) on β that expresses our prior beliefs over the parameters. Then we estimate β using the
MAP (maximum a posteriori) estimate as:

βMAP = argmaxβ

n∏
i=1

P (Yi|Xi;β)P (β) (2)

Show that maximizing Equation 2 can be expressed as minimizing Equation 1 given a Gaussian
prior on β (i.e. P (β) ∼ N (0, Iσ2/λ)). That is, show that the L2-norm regularization in the linear
regression model is effectively imposing a Gaussian prior assumption on the unknown parameter
β.

(b) [3 points] What is the probabilistic interpretation if λ → 0? How about if λ → ∞? Hint:
Consider how the prior P (β) ∼ N (0, Iσ2/λ) is affected by changing λ.

3. [6 points] LOOCV using Linear Regression In class, you learned about using cross validation as a
way to estimate the true error of a learning algorithm. The preferred solution is Leave-One-Out Cross
Validation (LOOCV), which provides an almost unbiased estimate of this true error. In this problem,
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you will derive the time complexity for computing the leave-one-out cross validation error for linear
regression using Singular Value Decomposition.

Recall that the Leave-One-Out Cross Validation score is defined to be:

LOOCV =
n∑

i=1

(Yi − Ŷi
(−i)

)
2

where Ŷi
(−i)

is the estimator of Y after removing the i-th observation (i.e., it minimizes
∑

j ̸=i (Yj − Ŷj
(−i)

)
2

.

Assume that you have a black-box implementation of the Singular-Value-Decomposition (SVD) and
for a given n-by-m matrix X, it returns three matrices U (n-by-m), a digonal matrix Σ (m-by-m) with
non-zero diagonal entries, and V (m-by-m) such that X = UΣV T , where X is rank m.

Using the given SVD package for the inversion of theXTX matrix, what is the complexity of computing
the LOOCV score?

Note 1: LOOCV loops through each point, performing a regression on the n − 1 remaining points at
each iteration.

Note 2: Assume n ≫ m, i.e. XTX is full-rank.

Note 3: The complexity of SVD for a n-by-m matrix is O(min(nm2,mn2)).

2 KNN [TK, 20 points]

2.1 [10 points] Decision Boundaries and Gedankenexperimente

In this problem you will conduct several gedankenexperimente (thought experiments) to understand some
properties of the KNN classifier. Consider the following four samples:

where colors indicate class labels. Each sample is typical of an underlying distribution.
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1. [4 points] Plot the decision boundaries1 of the 1NN classifier for the four samples.

2. [2 points] Imagine you repeat drawing training data points from the four distributions represented by
these four samples, and look at the decision boundaries given by the KNN classifier. Obviously the
decision boundaries will be different across different training samples; an interesting question then is
how sensitive the decision boundaries are to the training data. More specifically, how does the number
of neighbors used in KNN affect the variability of the decision boundary?

3. [4 points] In addition to KNN, you also train linear classifiers, such as Logistic Regression (LR), on
data drawn from the four distributions. Again, you repeatedly draw random samples, train classifiers,
and compute prediction error. For each of the four distributions, decide whether LR or KNN would
perform better on average, and justify your answer using conceptual arguments.

2.2 [10 points] Downside of KNN

Consider n sample points {x1,x2, . . . ,xn} independently and uniformly drawn from a p-dimensional zero-

centered unit ball B := {x |
√
x⊤x ≤ 1,x ∈ Rp}. In this problem you will study the size of the 1-nearest

neighborhood of the origin 0 and how it changes with respect to the dimension p, thereby gain intuition
about the downside of KNN in high dimension. More precisely, consider the distance from 0 to its nearest
neighbor in the sample:

d∗ := min
1≤i≤n

√
x⊤
i xi,

which is a random variable since the sample is random.

1. [2 point] In the special case p = 1, what is the cdf of d∗?

2. [2 points] In the general case p ∈ {1, 2, 3, . . .}, what is the cdf of d∗? (Hint: You may find the following

fact useful: the volume of a p-dimensional ball with radius r is (r
√
π)p

Γ(p/2+1) , where Γ(·) is the Gamma

function.)

3. [2 points] What is the median of the random variable d∗? Your answer should be a function of both
the sample size n and the dimension p. Fix n = 100, and plot the values of the median function for
p = 1, 2, 3, . . . , 100 with the median values on the y-axis and the values of p on the x-axis. What do
you see?

4. [2 points] With the cdf you derived in Problem 2.2.2, answer the following question: How large should
the sample size n be such that with probability at least 0.9, the distance d∗ from 0 to its nearest
neighbor is less than 1/2, i.e., half way from 0 to the boundary of the ball? Your answer should be a
function of p; plot this function for p = 1, 2, . . . , 20 with the function values on the y-axis and values
of p on the x-axis. What do you see?

5. [2 point] Having solved the previous problems, what will you say about the downside of KNN in terms
of n and p?

3 Programming – Kernel Smoothing and Risk [Rob Hall, 20 points]

In this section we will study leave-one-out cross validation applied to the kernel smoother (aka the Nadaraya-
Watson estimator). We will stick to data in a single dimension for the sake of simplicity.

We will have a “dataset” {(xi, yi)}ni=1. The data follows:

1No need of being super precise; qualitative correctness is enough.
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yi = f(xi) + ϵi, ϵi
iid∼ N(0, σ2)

The goal of regression is to estimate f(x) with a function f̂(x). Recall that the Nadaraya-Watson estimator
is given by:

f̂(x) =

∑n
i=1 yiK( |xi−x|

h )∑n
i=1 K( |xi−x|

h )
(3)

Where K(·) is the so called Kernel, and h is the bandwidth. In this example we will use the Gaussian
Kernel:

K(a) = (2π)−1/2exp

{
−a2

2

}
So here we see that h will takes the place of the standard deviation, and the data point x will take the place
of the mean – in the form of a gaussian distribution.

We will experiment with cross validation and compare to the minimization of the empirical risk. To have
control over this experiment we will simulate data from a known distribution.

� Sample xi ∼ U(−5, 5).

� Sample ϵi ∼ N(0, 0.1) and set yi = sin(xi) + ϵi.

The type of loss we will concern ourselves with is square error:

ℓ(y, f̂(x)) = (y − f̂(x))2

1. (1 Point) Sample a set of size n = 100 and plot it, along with the true regression function f(x).

2. (17 points) Write a program which performs the following:

� Sample a “training set” of size n = 100, and a testing set of size m = 100.

� Compute the kernel smoother for a particular choice of h, along with its empirical error, leave
one out cross-validation error, and testing error.

� Compute these measurements on the same data sample for the folowing values of h:
h ∈ {1.0, 0.75, 0.5, 0.25, 0.1, 0.05, 0.01, 0.005, 0.001}
Construct scatter plots of test error vs empirical error, and test error vs leave-one-out cross
validation error. Test error should be on the y-axis.

� Choose the function f̂ which minimizes the leave-one-out cross validation error, and plot the
training data sample along with the value of this function evaluated on the training data x values.

3. (2 points) Explain why it is a bad idea to merely minimize the empirical risk in problems like this.
Reffer to the second and third plots from above.

4 Bias-Variance Tradeoff, Regression Trees [Jayant, 20 pts]

1. Construct a data set for which the training error of a linear least squares fit is zero. What will be the
quadratic least squares fit to the same training data? What is the training error of the quadratic least
squares fit? [4pts]
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2. (a) Sketch the fit obtained using Nadaraya-Watson kernel regression using a box kernel with bandwidth
h = 2, 6, to the following piece-wise constant training data: [4pts]

2

1

1 2 3 4 5 6 7 8

Figure (3a)

(We suggest you manually plot a few points, then heuristically fill in the middle. Try to preserve
important properties of the curve, but don’t worry about getting the curve exactly right.)

(b) What value of h (bandwidth) would you choose and why? [2pts]

(c) Now consider that the data is corrupted by noise as below.

1

2

1 2 3 4 5 6 7 8

x
1

x
2

Figure (3b)

What value of h (bandwidth) would you choose to predict the label for test point x1 and why? Would
the same bandwidth provide a good prediction of the label for test point x2? Why? (No computations
needed, only answer qualitatively) [4pts]

3. Regression Trees
An alternate approach to handle piece-wise constant data is to use regression trees. Suppose that we
only allow mid-point splits, i.e. each split divides the attribute’s current interval into half. The tree
estimate performs a least square fit in each leaf. Draw the best tree estimate with (i) three leaves, (ii)
four leaves for the data in Figure (3a). [4pts]

(iii) Is there any advantage of using regression trees over kernel estimator? Comment. [2pts]

5 Decision Trees [Min Chi, 20 points]

5.1 ID3 with Descrete Attributes Only

Table 1 describes positive and negative instances of people who were and were not granted credit card. Each
row indicates the values observed, and how many times that set of values was observed. For example, (F,
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Low, + ) was observed 10 times, while (F, Low, + ) was observed 80 times.

Table 1: Credit Card Application With Two Attributes
Gender Income Approved Counts

F Low + 10
F High + 95
M Low + 5
M High + 90
F Low - 80
F High - 20
M Low - 120
M High - 30

1. [2 points:] Compute the sample entropy H for this training data (with logarithms base 2)?

2. [2 points:] Calculate the information gains (IG)

IG(Gender) = H(Approved)−H(Approved|Gender) (4)

and
IG(Income) = H(Approved)−H(Approved|Income) (5)

for this sample of training data?

3. [2 points:] Draw the decision tree that would be learned by ID3 (without postpruning) from this
sample of training data.

5.2 Decision Tree with Continous Attribute

Next we will add another attribute, age, to the training data. Table 2 describes the positive and negative
instances of people who were and were not granted credit card. Each applicant either gets accepted (+) or
rejected (-). Here each instances have three attributes: gender (F, M), income (Low, High), and age.

Table 2: Credit Card Application With Three Attributes
Gender Income Age Approved

M Low 22 +
M High 32 +
M High 38 +
M High 39 -
M High 31 -
F Low 23 -
F High 32 +

Note the continuous attribute age. To increase the complexity of a decision tree by the same amount for any
decision, only binary splits of the form age < A vs. age ≥ A are allowed, but there can be multiple such
splites in one path from root to leaf.

1. [2 points] How many possible values of A do we need to consider to determine the optimal root split
for the attribute age (note that some age values are repeated more than once)?
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2. [2 points] Draw the decision tree that would be learned by ID3 (the information-gain based algorithm
presented in the lecture) and annotate each non-leaf node in the tree with the information gain attained
by the respective split.

3. [3 points]Change one input attribute of one example in the above data set, so that the learned tree
will contain at least one additional node.

4. [7 points] We call a training example consistent with a decision tree if it is classified correctly be the
tree. Is it possible to add new examples to the original training set which are consistent with the tree
learned in (2), but nevertheless result in the ID3 algorithm run on the enlarged training set to learn a
tree whose root node is different from the original trees and whose number of nodes is larger than the
original trees? Justify your answer by explaining informally why this is impossible, or explaining the
new data you would add.
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