
10-701 Midterm Exam, Spring 2007

1. Personal info:

• Name:

• Andrew account:

• E-mail address:

2. There should be 16 numbered pages in this exam (including this cover sheet).

3. You can use any material you brought: any book, class notes, your print outs of class
materials that are on the class website, including my annotated slides and relevant
readings, and Andrew Moore’s tutorials. You cannot use materials brought by other
students. Calculators are allowed, but no laptops, PDAs, phones or Internet access.

4. If you need more room to work out your answer to a question, use the back of the page
and clearly mark on the front of the page if we are to look at what’s on the back.

5. Work efficiently. Some questions are easier, some more difficult. Be sure to give yourself
time to answer all of the easy ones, and avoid getting bogged down in the more difficult
ones before you have answered the easier ones.

6. Note there are extra-credit sub-questions. The grade curve will be made without
considering students’ extra credit points. The extra credit will then be used to try to
bump your grade up without affecting anyone else’s grade.

7. You have 80 minutes.

8. Good luck!

Question Topic Max. score Score

1 Short questions 21 + 0.911 extra
2 SVM and slacks 16
3 GNB 8
4 Feature Selection 10
5 Irrelevant Features 14 + 3 extra
6 Neural Nets 16 + 5 extra
7 Learning theory 15
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1 [21 Points] Short Questions

The following short questions should be answered with at most two sentences, and/or a
picture. For the (true/false) questions, answer true or false. If you answer true, provide a
short justification, if false explain why or provide a small counterexample.

1. [1 point] true/false A classifier trained on less training data is less likely to overfit.

2. [1 point] true/false Given m data points, the training error converges to the true
error as m→∞.

3. [1 point] true/false The maximum likelihood model parameters (α) can be learned
using linear regression for the model: yi = α1x1x

3
2 + ǫi where ǫi ∼ N(0, σ2) iid noise.

4. [2 points] true/false The maximum likelihood model parameters (α) can be learned
using linear regression for the model: yi = xα1

1 eα2 + ǫi where ǫi ∼ N(0, σ2) iid noise.
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5. [2 points] true/false The maximum likelihood model parameters (α) can be learned
using linear regression for the model: yi = log(xα1

1 eα2) + ǫi where ǫi ∼ N(0, σ2) iid
noise.

6. [2 points] true/false In AdaBoost weights of the misclassified examples go up by the
same multiplicative factor.

7. [2 points] true/false In AdaBoost, weighted training error ǫt of the tth weak classifier
on training data with weights Dt tends to increase as a function of t.

8. [2 points] true/false AdaBoost will eventually give zero training error regardless of
the type of weak classifier it uses, provided enough iterations are performed.

9. [2 points] Consider a point that is correctly classified and distant from the decision
boundary. Why would SVM’s decision boundary be unaffected by this point, but the
one learned by logistic regression be affected?
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10. [2 points] Why does the kernel trick allow us to solve SVMs with high dimensional
feature spaces, without significantly increasing the running time?

11. [2 points] Consider a learning problem with 2D features. How are the decision tree
and 1-nearest neighbor decision boundaries related?

12. [2 points] You are a reviewer for the International Mega-Conference on Algorithms
for Radical Learning of Outrageous Stuff, and you read papers with the following
experimental setups. Would you accept or reject each paper? Provide a one sentence
justification. (This conference has short reviews.)

• accept/reject “My algorithm is better than yours. Look at the training error
rates!”

• accept/reject “My algorithm is better than yours. Look at the test error rates!
(Footnote: reported results for λ = 1.789489345672120002.)”

• accept/reject “My algorithm is better than yours. Look at the test error rates!
(Footnote: reported results for best value of λ.)”

• accept/reject “My algorithm is better than yours. Look at the test error rates!
(Footnote: reported results for best value of λ, chosen with 10-fold cross valida-
tion.)”
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13. [Extra credit: 0.911 points] You have designed the ultimate learning algorithm that
uses physical and metaphysical knowledge to learn and generalize beyond the quantum
P-NP barrier. You are now given the following test example:

What label will your algorithm output?

(a) Watch a cartoon.

(b) Call the anti-terrorism squad.

(c) Support the Boston Red Sox.

(d) All labels have equal probability.
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2 [16 Points] SVMs and the slack penalty C

The goal of this problem is to correctly classify test data points, given a training data set.
You have been warned, however, that the training data comes from sensors which can be
error-prone, so you should avoid trusting any specific point too much.

For this problem, assume that we are training an SVM with a quadratic kernel– that is,
our kernel function is a polynomial kernel of degree 2. You are given the data set presented
in Figure 1. The slack penalty C will determine the location of the separating hyperplane.
Please answer the following questions qualitatively. Give a one sentence answer/justification
for each and draw your solution in the appropriate part of the Figure at the end of the
problem.
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Figure 1: Dataset for SVM slack penalty selection task in Question 2.

1. [4 points] Where would the decision boundary be for very large values of C (i.e.,
C → ∞)? (remember that we are using an SVM with a quadratic kernel.) Draw on
the figure below. Justify your answer.

2. [4 points] For C ≈ 0, indicate in the figure below, where you would expect the decision
boundary to be? Justify your answer.
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3. [2 points] Which of the two cases above would you expect to work better in the classi-
fication task? Why?

4. [3 points] Draw a data point which will not change the decision boundary learned for
very large values of C. Justify your answer.

5. [3 points] Draw a data point which will significantly change the decision boundary
learned for very large values of C. Justify your answer.
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(a) Part 1

1 2 3 4 5 6 7 8 9 10 11 12
0

2

4

6

8

10

12

(b) Part 2
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(c) Part 4
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(d) Part 5

Figure 2: Draw your solutions for Problem 2 here.
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3 [10 points] Feature selection with boosting

Consider a text classification task, such that the document X can be expressed as a binary
feature vector of the words. More formally X = [X1, X2, X3, ..., Xm], where Xj = 1 if word j

is present in document X, and zero otherwise. Consider using the AdaBoost algorithm with
a simple weak learner, namely

h(X; θ) = yXj

θ = {j, y} j is the word selector ; y is the associated class

y ∈ {−1, 1}

More intuitively, each weak learner is a word associated with a class label. For example
if we had a word football, and classes {sports,non-sports}, then we will have two weak
learners from this word, namely

• Predict sports if document has word football

• Predict non-sports if document has word football.

1. [2 points] How many weak learners are there ?

2. This boosting algorithm can be used for feature selection. We run the algorithm and
select the features in the order in which they were identified by the algorithm.

(a) [4 points] Can this boosting algorithm select the same weak classifier more than
once? Explain.

(b) [4 points] Consider ranking the features based on their individual mutual informa-
tion with the class variable y, i.e. Î(y; Xj). Will this ranking be more informative
than the ranking returned by AdaBoost ? Explain.
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Figure 3: A. toydata1 in Question 4, B. toydata2 in Question 4

4 [8 points] Gaussian Naive Bayes classifier

Consider the datasets toydata1 in figure 3(A) and toydata2 in figure 3(B).

• In each of these datasets there are two classes, ’+’ and ’o’.

• Each class has the same number of points.

• Each data point has two real valued features, the X and Y coordinates.

For each of these datasets, draw the decision boundary that a Gaussian Naive Bayes classifier
will learn.
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5 [16 Points] Neural Networks

Consider the following classification training data (where “*” = true or 1 and “O” = false
or 0) and neural network model that uses the sigmoid response function

(

g(t) = 1
1+e−t

)

.
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5.1 Weight choice

[8 points] We would like to set the weights (w) of the neural network so that it is capable of
correctly classifying this dataset. Please plot the decision boundaries for N1 and N2 (e.g.,
for neuron N1, the line where w10 + w11 ∗ X1 + w12 ∗ X2 = 0) on the first two graphs.
In the third graph, which has axes V2 and V1, plot {V1(x1, x2), V2(x1, x2)} for a few of the
training points and provide a decision boundary so that the neural net will correctly classify
the training data.

All graphs are on the following page!
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N1 (2 points)
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N3 (4 points)
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5.2 Regularized Neural Networks

[8 points]
One method for preventing the neural networks’ weights from overfitting is to add reg-

ularization terms. You will now derive the update rules for the regularized neural network.
Note: Y = out(x)

Recall that the non-regularized gradient descent update rule for w1 is:

wt+1
1 ← wt

1 + η
∑

j

[(

y(j) − out(x(j))
)

out(x(j))(1− out(x(j))) ∗ V1(x
(j))

]

(1)

[4 points] Derive the update rule for w1 in the regularized neural net loss function which
penalizes based on the square of each weight. Use λ to denote the magic regularization
parameter.

[4 points] Now, re-express the regularized update rule so that the only difference between
the regularized setting and the unregularized setting above is that the old weight wt

1 is scaled
by some constant. Explain how this scaling prevents overfitting.

5.3 Neural Net Simplification [Extra Credit (5 points)]

Please provide a feed-forward neural network with a smaller architecture (i.e., fewer neurons
and weights) that is able to correctly predict the entire training set. Justify your answer.
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6 [14 Points] The Effect of Irrelevant Features

1. (a) [3 points] Provide a 2D dataset where 1-nearest neighbor (1-NN) has lower leave-
one-out cross validation error (LOO error) than SVMs.

(b) [3 points] Provide a 2D dataset where 1-NN has higher LOO error than SVMs.

2. [8 points] You will now generate a dataset to illustrate SVMs’ robustness to irrelevant
features. In particular, create a 2D dataset with features X1 and X2, here X2 will be
the irrelevant feature, such that:

• If you only use X1, 1-NN will have lower LOO error than SVMs,

• but if you use both X1 and X2, the SVM LOO error will remain the same, but
LOO error for 1-NN will increase significantly.

You will receive extra credit if the 1-NN LOO error before adding the irrelevant feature
is zero, but the error becomes 100% after adding the feature.
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3. [Extra Credit (3 points)] SVMs tend to be robust to irrelevant features. Suppose
we run SVMs with features X1, . . . , Xn, and then add a irrelevant feature Xn+1 that
cannot help increase the margin. How will SVMs automatically ignore this feature?
Justify your answer formally.
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7 [15 points] Learning Theory

Consider binary data-points X in n dimensions, with binary labels Y , i.e. X ∈ {0, 1}n; Y ∈
{0, 1}. We wish to learn a mapping X → Y using a few different hypothesis classes, but
are concerned about the tradeoff between the expressivity of our hypothesis space and the
number of training examples required to learn the true mapping probably approximately
correctly.

1. Consider the following hypothesis class H : decision stumps that choose a value for Y

based on the value of one of the attributes of X. For example, there are two hypotheses
in H that involve feature i:

hi(X) =

{

1 if Xi = 1

0 otherwise
h¬i(X) =

{

0 if Xi = 1

1 otherwise;

(a) [3 points] What is the size of this hypothesis class?

(b) [3 points] For given ǫ, δ how many training examples are needed to yield a decision
stump that satisfies the Haussler-PAC bound?
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2. Now let us define another hypothesis class H ′, where each hypothesis is a majority
over a set of simple decision stumps. Specifically, for each feature i, we either use hi

or h¬i, and the output is the result of a majority vote (in the case of a tie, we predict
1). For example, if we have 5 features, and we choose the stumps {h¬1, h2, h3, h4, h¬5},
then the resulting hypothesis is:

h′(X) =

{

1 if h¬1(X) + h2(X) + h3(X) + h4(X) + h¬5(X) ≥ 5
2

0 otherwise

(a) [4 points] What is the size of this hypothesis class?

(b) [2 points] For given ǫ, δ how many training examples are needed to yield a hy-
pothesis that satisfies the Haussler-PAC bound?

3. [3 points] What can we say about the amount of extra samples necessary to learn this
voting classifier? Is this a concern?
Briefly explain the tradeoff between the expressive power of the hypothesis space and
the number of training samples required for these two classifier.
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