Q1 Probability and MLE [20 pts]

1. (a) Suppose we wish to calculate P(H|E;, E3) and we have no conditional independence information.
Which of the following sets of numbers are sufficient for the calculation ?

i. P(By,E,), P(H), P(Ey|H), P(Ey|H) . N e e Loy
GP(B,, By), P(H), P(Ew o) Bayes' Rule | P(HIE, E7) = i.ﬁf}m FM
iii. P(H), P(Ey|H), P(E,|H) >E T )

(b) Suppose we know that P(E;|H, Es) = P(E1|H) for all values of H, E;, Es. Now which of the
above three sets are sufficient ?
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2. Which of the Tollowing statements are true ? If nons of them are true, write NONE.
(a) I X and Y are independent then E(2XY] = 2E[X]E[Y] and Var[X + 2Y] =Var(X] + Var[y].

Var ke I - A Ko £
(b) If X and Y are independent and X > 1 then Var[X+2Y?) = Var [X]+4Var[Y?]) and E[X*-X] >
Var[X].

(¢) If X are Y are not independent then Var[X +Y| = Var[X]|+ Var gl
(d) If X and Y are independent then E[XY? = E[X]FE[Y]? and VarlX + Y] = Var[X] 4+ Var[y].

(e) If X and Y are not independent and J(X) = X? then E[f(X)Y] = E[f(X)]E]Y] and Var[X +
2Y] = Var[X] + 4Var[Y]
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3. You are playing a game with two coins. Coin 1 has a 6 probability of heads. Coin 2 has a 20 probability
of heads. You flip these coins several times and record your results:

lgoin ] Result ,

1 Head
2 Tail
2 Tail
2 Tail
2 Head

(a) What is the log-likelihood of the data given 6 7 -
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(b) What is the maximum likelihood estiniate for § ?
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Q2 Decision Trees [20 pts]

1. The figure below shows a dataset with two inputs X; and X, and one output Y, which can take on
the values positive (+) or negative (-). There are 16 datapoints: 12 are positive and 4 are negative.
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Assume we are testing two extreme decision tree learning algorithms. Algorithm OVERFIT builds a
decision tree in the standard fashion, but never prunes. Algorithm UNDERFIT refuses to risk splitting
at all, and so the entire decision tree is just one leaf node.

(a) Exactly how many leaf-nodes will be in the decision tree learned by OVERFIT on this data?
q (54& p\cl\u-e A(oo\/e_)
(b) What is the leave-one-out classification error of using OVERFIT on our dataset? Report the total
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(d) Now, suppose we are learning a decision tree from a dataset with M binary-valued inputs and R
training points. What is the maximum possible number of leaves in the decision tree. Circle one
of the following answers:

e R<2M then
\aukesk' leee Was & R,logy(R),R?,2%,M,logy (M), M?,2M,
Simle PD:A“ ab each min(R, M), min(R,log,(M)), min(R, M>X
L2a€ e, R leaves. min(log,(R), M), min(log,(R),log,(M)), min(log,(R), M?), min(log,(R), 2M),
/ min(R?, M), min(R?, log,(M)), min(R?, M?), min(R?,2M),
If R >2™ then min(2%, M), min(2%, log, (M)), min(2%, M2), min(2%, 2M),
Yha Sr\iH/:“j pust shop  max(R, M), max(R,log,(M)), max(R, M?), max(R, 2V),
afl‘el Al M k%Lw\fCS max(log,(R), M), max(log,(R), log,(M)), max(log, (R), M?), max(logy(R), 2M),
bed max(R?, M), max(R?,1og,(M)), max(R?, M?), max(R? 2M),
Wadel been tesres. . max(2%, M), max(2%, log, (M), max(2%, M?), max(2%, 2M)
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Linear Regression

Consider fitting the linear regression model for these data
x|-1 0 2
vy 1 -1 1
(b) Fit Y; = o + ¢; (degenerated linear regression), find Go.
fo =argmin Y (V; — fo)?
Bo=1/3
(b) Fit ¥; = $1X; + ¢; (linear regression without the constant term), find o
and ,51 .
By =argmin 3(V; — 61 X;)?
=2 XY/ XE=1/5



Q4 Conditional Independence [5 pts]

1. Consider the following joint distribution over the random variables A, B, and C.

P(A,B,C)
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(a) True or False: A is conditionally independent of B given C. .
oe. becavse Visk ECAsi1B=3,C=l) = PCA=i | C=K)
(b) If you answered part (a) with TRUE, make a change to the top two rows of this table to create
a joint distribution in which the answer to (a) is FALSE.

If you answered part (a) with FALSE, make a change to the top two rows of this table to create
a joint distribution in which the answer to (a) is TRUE.
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Q5 Generative vs Discriminative Classifiers [15 pts]

1. You wish to train a classifier to predict the gender (a boolean variable, G) of a person based on
that person’s weight (a continuous variable, W) and whether or not they are a graduate student (a
boolean variable, S). Assume that W and S are conditionally independent given G. Also, assume
that the variance of the probability distribution P(Weight|Gender = female) equals the variance for
P(Weight|Gender = male). .

(a) Is it reasonable to train a Naive Bayes classifier for this task?
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(b) If not, explain why not, and describe how you might reformulate this problem to allow training
a naive Bayes classifier. If so, list every probability distribution your classifier must learn, what
form of distribution you would use for each, and give the total number of parameters your classi-
fier must estimate from the training data.
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(c) Note one difference between the above P(Gender|Weight, Student) problem and the problems
we discussed in class is that the above problem involves training a classifier over a combination
of boolean and continuous inputs. Now suppose you would like to train a discriminative classifier
for this problem, to directly fit the parameters of P(G|W, S), under the conditional independence

assumption. Assuming that W and S are conditionally independent given G, is it correct to
assume that P(G = 1]W, S) can be expressed as a conventional logistic function:

1

PG =1W,5) = 1+ exp(wo + w1 W + w2S)

If not, explain why not. If so, prove this.
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Q6 Neural Networks [20 pts]

1. For this question, suppose we have a Neural Network (shown below) with linear activation units. In
other words, the output of each unit is a constant C multiplied by the weighted sum of inputs

(a) Can any function that is represented by the above network also be represented by a single unit
ANN (or perceptron). If so, draw the equivalent perceptron, detailing the weights and the acti-
vation function. Otherwise, explain why not.
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(b) Can the space of functions that is represented by the above ANN also be represented by linear
regression? (Yes/No) | '.
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2. Consider the XOR function: Y = (Xll/\ —X3) V (n X1 A Xo). We can also express this as:
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vl : X1 # X
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It is well known that XOR cannot be implemented by a single perceptron. Draw a fully connected
three unit ANN that has binary inputs Xy, Xs, 1 and output Y. e e L/ W’/«’ lemm oy
Select weights that implement Y = (X; XOR Xa,). ’ n i, L é /Z ‘
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For this question, assume the sigmoid activation function: & j
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