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� You have 3 hours.� There are 10 questions. If you get stu
k on one question, move on to others and 
omeba
k to the diÆ
ult question later.� The maximum possible total s
ore is 100.� Unless otherwise stated there is no need to show your working.� Good lu
k!
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1 Short Questions (16 points)(a) Traditionally, when we have a real-valued input attribute during de
ision-tree learningwe 
onsider a binary split a

ording to whether the attribute is above or below somethreshold. Pat suggests that instead we should just have a multiway split with onebran
h for ea
h of the distin
t values of the attribute. From the list below 
hoose thesingle biggest problem with Pat's suggestion:(i) It is too 
omputationally expensive.(ii) It would probably result in a de
ision tree that s
ores badly on the training setand a testset.(iii) It would probably result in a de
ision tree that s
ores well on the training set butbadly on a testset.(iv) It would probably result in a de
ision tree that s
ores well on a testset but badlyon a training set.(b) You have a dataset with three 
ategori
al input attributes A, B and C. There is one
ategori
al output attribute Y. You are trying to learn a Naive Bayes Classi�er forpredi
ting Y. Whi
h of these Bayes Net diagrams represents the naive bayes 
lassi�erassumption?
A CB A CB

Y Y

A CB

Y

A CB Y

(i)

(iii)

(ii)

(iv)

(
) For a neural network, whi
h one of these stru
tural assumptions is the one that mosta�e
ts the trade-o� between under�tting (i.e. a high bias model) and over�tting (i.e.a high varian
e model):(i) The number of hidden nodes(ii) The learning rate(iii) The initial 
hoi
e of weights(iv) The use of a 
onstant-term unit input2



(d) For polynomial regression, whi
h one of these stru
tural assumptions is the one thatmost a�e
ts the trade-o� between under�tting and over�tting:(i) The polynomial degree(ii) Whether we learn the weights by matrix inversion or gradient des
ent(iii) The assumed varian
e of the Gaussian noise(iv) The use of a 
onstant-term unit input(e) For a Gaussian Bayes 
lassi�er, whi
h one of these stru
tural assumptions is the onethat most a�e
ts the trade-o� between under�tting and over�tting:(i) Whether we learn the 
lass 
enters by Maximum Likelihood or Gradient Des
ent(ii) Whether we assume full 
lass 
ovarian
e matri
es or diagonal 
lass 
ovarian
ematri
es(iii) Whether we have equal 
lass priors or priors estimated from the data.(iv) Whether we allow 
lasses to have di�erent mean ve
tors or we for
e them to sharethe same mean ve
tor(f) For Kernel Regression, whi
h one of these stru
tural assumptions is the one that mosta�e
ts the trade-o� between under�tting and over�tting:(i) Whether kernel fun
tion is Gaussian versus triangular versus box-shaped(ii) Whether we use Eu
lidian versus L1 versus L1 metri
s(iii) The kernel width(iv) The maximum height of the kernel fun
tion(g) (True or False) Given two 
lassi�ers A and B, if A has a lower VC-dimension thanB then A almost 
ertainly will perform better on a testset.(h) P (Good Movie j In
ludes Tom Cruise) = 0:01P (Good Movie j Tom Cruise absent) = 0:1P (Tom Cruise in a randomly 
hosen movie) = 0:01What is P (Tom Cruise is in the movie j Not a Good Movie)?
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2 Markov De
ision Pro
esses (13 points)For this question it might be helpful to re
all the following geometri
 identities, whi
h assume0 � � < 1. kXi=0 �i = 1� �k+11� � 1Xi=0 �i = 11� �The following �gure shows an MDP with N states. All states have two a
tions (Northand Right) ex
ept Sn, whi
h 
an only self-loop. Unlike most MDPs, all state transitions aredeterministi
. Assume dis
ount fa
tor 
.
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s
n-1

r = 1

p = 1

p=1For questions (a){(e), express your answer as a �nite expression (no summationsigns or : : : 's) in terms of n and/or 
.(a) What is J�(Sn)?
(b) There is a unique optimal poli
y. What is it?
(
) What is J�(S1)?
(d) Suppose you try to solve this MDP using value iteration. What is J1(S1)?
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(e) Suppose you try to solve this MDP using value iteration. What is J2(S1)?

(f) Suppose your 
omputer has exa
t arithmeti
 (no rounding errors). How many itera-tions of value iteration will be needed before all states re
ord their exa
t (
orre
t toin�nite de
imal pla
es) J� value? Pi
k one:(i) Less than 2n(ii) Between 2n and n2(iii) Between n2 + 1 and 2n(iv) It will never happen(g) Suppose you run poli
y iteration. During one step of poli
y iteration you 
ompute thevalue of the 
urrent poli
y by 
omputing the exa
t solution to the appropriate systemof n equations in n unknowns. Suppose too that when 
hoosing the a
tion during thepoli
y improvement step, ties are broken by 
hoosing North.Suppose poli
y iteration begins with all states 
hoosing North.How many steps of poli
y iteration will be needed before all states re
ord their exa
t(
orre
t to in�nite de
imal pla
es) J� value? Pi
k one:(i) Less than 2n(ii) Between 2n and n2(iii) Between n2 + 1 and 2n(iv) It will never happen 5



3 Reinfor
ement Learning (10 points)This question uses the same MDP as the previous question, repeated here for your 
onve-nien
e. Again, assume 
 = 12 .
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r = 1
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p=1Suppose we are dis
overing the optimal poli
y via Q-learning. We begin with a Q-tableinitialized with 0's everywhere:Q(Si; North) = 0 for all iQ(Si; Right) = 0 for all iBe
ause the MDP is determisti
, we run Q-learning with a learning rate � = 1. Assume westart Q-learning at state S1.(a) Suppose our exploration poli
y is to always 
hoose a random a
tion. How many stepsdo we expe
t to take before we �rst enter state Sn?(i) O(n) steps(ii) O(n2) steps(iii) O(n3) steps(iv) O(2n) steps(v) It will 
ertainly never happen(b) Suppose our exploration is greedy and we break ties by going North:Choose North if Q(Si; North) � Q(Si; Right)Choose Right if Q(Si; North) < Q(Si; Right)How many steps do we expe
t to take before we �rst enter state Sn?(i) O(n) steps(ii) O(n2) steps(iii) O(n3) steps(iv) O(2n) steps(v) It will 
ertainly never happen
6



(
) Suppose our exploration is greedy and we break ties by going Right:Choose North if Q(Si; North) > Q(Si; Right)Choose Right if Q(Si; North) � Q(Si; Right)How many steps do we expe
t to take before we �rst enter state Sn?(i) O(n) steps(ii) O(n2) steps(iii) O(n3) steps(iv) O(2n) steps(v) It will 
ertainly never happenWARNING: Question (d) is only worth 1 point so you should probably justguess the answer unless you have plenty of time.(d) In this question we work with a similar MDP ex
ept that ea
h state other than Sn hasa punishment (-1) instead of a reward (+1). Sn remains the same large reward (10).The new MDP is shown below:
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p=1Suppose our exploration is greedy and we break ties by going North:Choose North if Q(Si; North) � Q(Si; Right)Choose Right if Q(Si; North) < Q(Si; Right)How many steps do we expe
t to take before we �rst enter state Sn?(i) O(n) steps(ii) O(n2) steps(iii) O(n3) steps(iv) O(2n) steps(v) It will 
ertainly never happen
7



4 Bayesian Networks (11 points)Constru
tion. Two astronomers in two di�erent parts of the world, make measurementsM1 and M2 of the number of stars N in some small regions of the sky, using their teles
opes.Normally, there is a small possibility of error by up to one star in ea
h dire
tion. Ea
hteles
ope 
an be, with a mu
h smaller probability, badly out of fo
us (events F1 and F2). Insu
h a 
ase the s
ientist will under
ount by three or more stars or, if N is less than three,fail to dete
t any stars at all.For questions (a) and (b), 
onsider the four networks shown below.
NF1 F2M1 M2 NF1 F2M1 M2
NM1 M2

F1 F2 N
F1 F2M1 M2

(i) (ii)
(iii) (iv)

(a) Whi
h of them 
orre
tly, but not ne
essarily eÆ
iently, represents the above informa-tion? Note that there may be multiple answers.
(b) Whi
h is the best network?
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Inferen
e. A student of the Ma
hine Learning 
lass noti
es that people driving SUVs(S) 
onsume large amounts of gas (G) and are involved in more a

idents than the nationalaverage (A). He also noti
ed that there are two types of people that drive SUVs: peoplefrom Pennsylvania (L) and people with large families (F ). After 
olle
ting some statisti
s,he arrives at the following Bayesian network.
S P(S|L,F)=0.8P(S|~L,F) = 0.5P(S|L,~F)=0.6P(S|~L,~F)=0.3

LP(L)=0.4 F P(F)=0.6
AP(A|S)=0.7P(A|~S)=0.3 G P(G|S)=0.8P(G|~S)=0.2(
) What is P (S)?

(d) What is P (SjA)?
Consider the following Bayesian network. State whether the given 
onditional independen
esare implied by the net stru
ture.CA B DEF(f) (True or False) I<A,fg,B>(g) (True or False) I<A,fEg,D>(h) (True or False) I<A,fFg,D> 9



5 Instan
e Based Learning (8 points)Consider the following dataset with one real-valued input x and onebinary output y. We are going to use k-NN with unweighted Eu-
lidean distan
e to predi
t y for x.
-0.1 0.7 1.0 1.6 2.0 2.5 3.2 3.5 4.1 4.9

– – – –+ + + + + +

X Y

-0.1 -

0.7 +

1.0 +

1.6 -

2.0 +

2.5 +

3.2 -

3.5 -

4.1 +

4.9 +(a) What is the leave-one-out 
ross-validation error of 1-NN on this dataset? Give youranswer as the number of mis
lassi�
ations.(b) What is the leave-one-out 
ross-validation error of 3-NN on this dataset? Give youranswer as the number of mis
lassi�
ations.Consider a dataset with N examples: f(xi; yi)j1 � i � Ng, where both xi and yi are realvalued for all i. Examples are generated by yi = w0 + w1xi + ei where ei is a Gaussianrandom variable with mean 0 and standard deviation 1.(
) We use least square linear regression to solve w0 and w1, that isfw�0; w�1g = arg minfw0;w1gPNi=1(yi � w0 � w1xi)2:We assume the solution is unique. Whi
h one of the following statements is true?(i) PNi=1(yi � w�0 � w�1xi)yi = 0(ii) PNi=1(yi � w�0 � w�1xi)x2i = 0(iii) PNi=1(yi � w�0 � w�1xi)xi = 0(iv) PNi=1(yi � w�0 � w�1xi)2 = 0(d) We 
hange the optimization 
riterion to in
lude lo
al weights, that isfw�0; w�1g = arg minfw0;w1gPNi=1 �2i (yi � w0 � w1xi)2where �i is a lo
al weight. Whi
h one of the following statements is true?(i) PNi=1 �2i (yi � w�0 � w�1xi)(xi + �i) = 0(ii) PNi=1 �i(yi � w�0 � w�1xi)xi = 0(iii) PNi=1 �2i (yi � w�0 � w�1xi)(xiyi + w�1) = 0(iv) PNi=1 �2i (yi � w�0 � w�1xi)xi = 0 10



6 VC-dimension (9 points)Let H denote a hypothesis 
lass, and V C(H) denote its VC dimension.(a) (True or False) If there exists a set of k instan
es that 
annot be shattered by H,then V C(H) < k.(b) (True or False) If two hypothesis 
lasses H1 and H2 satisfy H1 � H2, thenV C(H1) � V C(H2).(
) (True or False) If three hypothesis 
lasses H1; H2 and H3 satisfy H1 = H2 [ H3 ,then V C(H1) � V C(H2) + V C(H3) .For questions (d){(f), give V C(H). No explanation is required.(d) H = fh�j0 � � � 1; h�(x) = 1 i� x � � otherwise h�(x) = 0g.
(e) H is the set of all per
eptrons in 2D plane, i.e.H = fhwjhw = �(w0 + w1x1 + w2x2) where �(z) = 1 i� z � 0 otherwise �z = 0g.
(f) H is the set of all 
ir
les in 2D plane. Points inside the 
ir
les are 
lassi�ed as 1otherwise 0.
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7 SVM and Kernel Methods (8 points)(a) Kernel fun
tions impli
itly de�ne some mapping fun
tion �(�) that transforms an inputinstan
e x 2 Rd to a high dimensional feature spa
e Q by giving the form of dot produ
tin Q: K(xi;xj) = �(xi) � �(xj).Assume we use radial basis kernel fun
tion K(xi;xj) = exp(�12kxi � xjk2). Thus weassume that there's some impli
it unknown fun
tion �(x) su
h that�(xi) � �(xj) = K(xi;xj) = exp(�12kxi � xjk2)Prove that for any two input instan
es xi and xj, the squared Eu
lidean distan
eof their 
orresponding points in the feature spa
e Q is less than 2, i.e. prove thatk�(xi)� �(xj)k2 < 2.

(b) With the help of a kernel fun
tion, SVM attempts to 
onstru
t a hyper-plane in thefeature spa
e Q that maximizes the margin between two 
lasses. The 
lassi�
ationde
ision of any x is made on the basis of the sign ofŵT�(x) + ŵ0 =Xi2SV yi�iK(xi;x) + ŵ0 = f(x;�; ŵ0);where ŵ and ŵ0 are parameters for the 
lassi�
ation hyper-plane in the feature spa
eQ, SV is the set of support ve
tors, and �i is the 
oeÆ
ient for the support ve
tor.Again we use the radial basis kernel fun
tion. Assume that the training instan
es arelinearly separable in the feature spa
e Q, and assume that the SVM �nds a marginthat perfe
tly separates the points.(True or False) If we 
hoose a test point xfar whi
h is far away from any traininginstan
e xi (distan
e here is measured in the original spa
e Rd), we will observe thatf(xfar;�; ŵ0) � ŵ0.(
) (True or False) The SVM learning algorithm is guaranteed to �nd the globallyoptimal hypothesis with respe
t to its obje
t fun
tion.(d) (True or False) The VC dimension of a Per
eptron is smaller than the VC dimensionof a simple linear SVM. 12



(e) (True or False) After being mapped into feature spa
e Q through a radial basiskernel fun
tion, a Per
eptron may be able to a
hieve better 
lassi�
ation performan
ethan in its original spa
e (though we 
an't guarantee this).(f) (True or False) After mapped into feature spa
e Q through a radial basis kernelfun
tion, 1-NN using unweighted Eu
lidean distan
e may be able to a
hieve better
lassi�
ation performan
e than in original spa
e (though we 
an't guarantee this).
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8 GMM (8 points)Consider the 
lassi�
ation problem illustrated in the following �gure. The data points in the�gure are labeled, where \o" 
orresponds to 
lass 0 and \+" 
orresponds to 
lass 1. We nowestimate a GMM 
onsisting of 2 Gaussians, one Gaussian per 
lass, with the 
onstraint thatthe 
ovarian
e matri
es are identity matri
es. The mixing proportions (
lass frequen
ies)and the means of the two Gaussians are free parameters.

0 0.5 1 1.5 2
0

0.5

1

1.5

2

x
1

x 2

(a) Plot the maximum likelihood estimates of the means of the two Gaussians in the �gure.Mark the means as points \x" and label them \0" and \1" a

ording to the 
lass.(b) Based on the learned GMM, what is the probability of generating a new data pointthat belongs to 
lass 0?(
) How many data points are 
lassi�ed in
orre
tly?(d) Draw the de
ision boundary in the same �gure.
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9 K-means Clustering (9 points)There is a set S 
onsisting of 6 points in the plane shown as below, a = (0; 0), b = (8; 0),
 = (16; 0), d = (0; 6), e = (8; 6), f = (16; 6). Now we run the k-means algorithm on thosepoints with k = 3. The algorithm uses the Eu
lidean distan
e metri
 (i.e. the straight linedistan
e between two points) to assign ea
h point to its nearest 
entroid. Ties are broken infavor of the 
entroid to the left/down. Two de�nitions:� A k-starting 
on�guration is a subset of k starting points from S that form theinitial 
entroids, e.g. fa; b; 
g.� A k-partition is a partition of S into k non-empty subsets, e.g. fa; b; eg; f
; dg; ffg isa 3-partition.Clearly any k-partition indu
es a set of k 
entroids in the natural manner. A k-partitionis 
alled stable if a repetition of the k-means iteration with the indu
ed 
entroids leaves itun
hanged.
fed

a b c
0

2

4

6

8

0 4 8 12 16 20

x

y

(a) How many 3-starting 
on�gurations are there? (Remember, a 3-starting 
on�gurationis just a subset, of size 3, of the six datapoints).(b) Fill in the following table:3-partition Is it sta-ble? An example 3-starting 
on�gura-tion that 
an arrive at the 3-partition after 0 or more itera-tions of k-means (or write \none"if no su
h 3-starting 
on�gura-tion)
The number ofunique starting
on�gurations that
an arrive at the3-partitionfa; b; eg; f
; dg; ffgfa; bg; fd; eg; f
; fgfa; dg; fb; eg; f
; fgfag; fdg; fb; 
; e; fgfa; bg; fdg; f
; e; fgfa; b; dg; f
g; fe; fg
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10 Hidden Markov Models (8 points)Consider a hidden Markov model illustrated as the �gure shown below, whi
h shows thehidden state transitions and the asso
iated probabilities along with the initial state distribu-tion. We assume that the state dependent outputs (
oin 
ips) are governed by the followingdistributionsP (x = headsjs = 1) = 0:51P (x = headsjs = 2) = 0:49P (x = tailsjs = 1) = 0:49P (x = tailsjs = 2) = 0:51In other words, our 
oin is slightly biased towards heads in state 1 whereas in state 2 tailsis a somewhat more probable out
ome.
2

1 1 1

2 2

. . .

. . .

t=0 t=1 t=2

0.9

0.1

0.9
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0.1
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0.1

0.9

0.01

0.99

(a) Now, suppose we observe three 
oin 
ips all resulting in heads. The sequen
e ofobservations is therefore heads; heads; heads. What is the most likely state sequen
egiven these three observations? (It is not ne
essary to use the Viterbi algorithm todedu
e this, nor any subsequent questions).
(b) What happens to the most likely state sequen
e if we observe a long sequen
e of allheads (e.g., 106 heads in a row)?
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(
) Consider the following 3-state HMM, �1, �2 and �3 are the probabilities of starting fromea
h state S1, S2 and S3. Give a set of values so that the resulting HMM maximizesthe likelihood of the output sequen
e ABA.

S1

S3

S2

_

_

_

_

_

_

_

___

__

_

_ _

A

A

B

B

BA

PSfrag repla
ements
�1 = �2 =

�3 =
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(d) We're going to use EM to learn the parameters for the following HMM. Before the �rstiteration of EM we have initialized the parameters as shown in the following �gure.(True or False) For these initial values, EM will su

essfully 
onverge to the modelthat maximizes the likelihood of the training sequen
e ABA.
S3

S1 S2

A

A

B

B BA

PSfrag repla
ements�1 =�2 =�3 =
�1 = 1/3 �2 = 1/3

�3 = 1/3

1/3 1/31/3
1/3 2/3 1/3 1/3

1/3
1/3 2/3

1/3 1/3
1/31/32/3

(e) (True or False) In general when are trying to learn an HMM with a small number ofstates from a large number of observations, we 
an almost always in
rease the trainingdata likelihood by permitting more hidden states.
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