Last name (CAPTIALS):

First name (CAPITALS):

Andrew User ID (CAPITALS): (without the Q@andrew.cmu.edu bit):

15-781 Final Exam, Fall 2001

e You must answer any nine questions out of the following twelve. Each question is
worth 11 points.

e You must fill out your name and your andrew userid clearly and in block capital letters
on the front page. You will be awarded 1 point for doing this correctly.

e If you answer more than 9 questions, your best 9 scores will be used to derive your
total.

e Unless the question asks for explanation, no explanation is required for any answer.
But you are welcome to provide explanation if you wish.



Bayes Nets Inference

= 2/3
P(A|K) = 1/2
~K) = 1/10

Half of all kangaroos in the zoo are angry, and 2/3 of the zoo is comprised of kangaroos.
Only 1 in 10 of the other animals are angry. What’s the probability that a randomly-
chosen animal is an angry kangaroo?

0.5
P(C|s) = 0.5
P(C|~S 0.2

Half of all people are stupid. If you’re stupid then you’re more likely to be confused.
A randomly-chosen person is confused. What’s the chance they’re stupid?

Kangaroos.

Stupidity.

Potatoes.

N

| P(B) = 1/2

' P(TIB) = 1/2
\T ) p(TI~B) = 1/10

/"'\ P(LIT) = 1/2
\E ) py~T) = 1/10

Half of all potatoes are big. A big potato is more likely to be tall. A tall potato is
more likely to be lovable. What’s the probability that a big lovable potato is tall?



(d) Final part.

What's P(W A F)?



Bayes Nets and HMMs

Let nbs(m) = the number of possible Bayes Network graph structures using m at-
tributes. (Note that two networks with the same structure but different probabilities
in their tables do not count as different structures). Which of the following statements
is true?

(m=1) < nbs(m) < 2™

m(m—1)

iv) 2™ < nbs(m) <27 =

Remember that I < X,Y, Z > means
X is conditionally independent of Z given Y

Assuming the conventional assumptions and notation of Hidden Markov Models, in
which ¢; denotes the hidden state at time ¢t and O; denotes the observation at time ¢,
which of the following are true of all HMMs? Write “True” or “False” next to each
statement.

o (i) I <aqu1,q, 1 >

o (ii) I < quyo,qt, t—1 >

(
(
(iii) I < qus1, G0, G2 >
(iv) I < Ops1,04, 041 >
(

(

v) I < O412,0,,0,1 >
vi) I < Op41,04, Opg >



3 Regression

(a) Consider the following data with one input and one output.
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e (i) What is the mean squared training set error of running linear regression on
this data (using the model y = wy + wyz)?

e (ii) What is the mean squared test set error of running linear regression on this

data, assuming the rightmost three points are in the test set, and the others are
in the training set.

e (iii) What is the mean squared leave-one-out cross-validation (LOOCV) error of
running linear regression on this data?



(b) Consider the following data with one input and one output.
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e (i) What is the mean squared training set error of running linear regression on
this data (using the model y = wy + wyx)? (Hint: by symmetry it is clear that
the best fit to the three datapoints is a horizontal line).

e (ii) What is the mean squared leave-one-out cross-validation (LOOCV) error of
running linear regression on this data?



(¢) Suppose we plan to do regression with the following basis functions:

17 ¢ 1 4 1+ A
VY s 7\
VAR ¢ 7
-l V= —————— 0-=-=-=+ Y- --- &) *
0 2 4 6 0 2 6 0 4 6
X (input) —-——> X (input) ———> X (input) -—-——>
pi(x)y= 0 ifx<O po(x)= 0 ifx<?2 o3(x) 0 ifz<4
m(z)= o= f0<z<l Go(z) = -2 if2<z<3 p3(x) = z—4 if4<z<5b
()= 2—2 ifl<z<?2 Po(r) = 4—2 f3<x<4 p3(z) = 6—2 if5<xr<6
¢1(x) 0 if2<z po(x)= 0 ifd<z p3(x)= 0 if6<zx

Our regression will be y = f1¢1(x) + faga(x) + P3d3(x).

Assume all our datapoints and future queries have 1 < x < 5. Is this a generally useful
set of basis functions to use? If “yes”, then explain their prime advantage. If “no”,
explain their biggest drawback.



4 Regression Trees

Regression trees are a kind of decision tree used for learning from data with a real-valued
output instead of a categorical output. They were discussed in the “Eight favorite regression
algorithms” lecture.

On the next page you will see pseudocode for building a regression tree in the special
case where all the input attributes are boolean (they can have values 0 or 1).

The MakeTree function takes two arguments:

e D, a set of datapoints
e and A, a set of input attributes.

It then makes the best regression tree it can using only the datapoints and attributes passed
to it. It is a recursive procedure. The full algorithm is run by calling MakeTree with
D containing every record and A containing every attribute. Note that this code does no
pruning, and that it assumes that all input attributes are binary-valued.

Now read the code on the next page, after which question (a) will ask you about bugs in
the code.



MakeTree(D,A)
Returns a Regression Tree

1. For each attribute a in the set A do...
1.1 Let DO = { (xk,yk) in D such that xk[a] = 0 }

// Comment: xk[a] denotes the value of attribute a in record xk
1.2 Let D1 = { (xk,yk) in D such that xk[a] = 1 }

// Comment: Note that DO union D1 ==

// Comment: Note too that DO intersection D1 == empty
muO = mean value of yk among records in DO

mul = mean value of yk among records in D1

SSE0 = sum over all records in DO of (yk - mu0O) squared
SSE1 = sum over all records in D1 of (yk - mu0O) squared
Let Scorel[a] = SSEO + SSE1

N
~N O O W

2. // Once a score has been computed for each attribute, let...

ax = argmax Scorela]

a

3. Let DO = { (xk,yk) in D such that xk[a*] = 0 }
4. Let D1 = { (xk,yk) in D such that xk[a*] = 1 }
3. Let LeftChild = MakeTree(DO,A - {ax})

// Comment: A - {a*} means the set containing all elements of A except for ax
4, Let RightChild = MakeTree(D1,A - {ax})
5. Return a tree whose root tests the value of a*, and whose ‘‘ax = 0’

branch is LeftChild and whose ‘‘a* = 1’’ branch is RightChild.

(a) Beyond the obvious problem that there is no pruning, there are three bugs in the above
code. They are all very distinct. One of them is at the level of a typographical error.
The other two are more serious errors in logic. Identify the three bugs (remembering
that the lack of pruning is not one of the three bugs), explaining why each one is a
bug. It is not necessary to explain how to fix any bug, though you are welcome to do
so if that’s the easiest way to explain the bug.

(b) Why, in the recursive calls to MakeTree, is the second argument “A — {ax}" instead
of simply “A”?



5 Clustering

In the left of the following two pictures I show a dataset. In the right figure I sketch the
globally maximally likely mixture of three Gaussians for the given data.

e Assume we have protective code in place that prevents any degenerate solutions in
which some Gaussian grows infinitesimally small.

e And assume a GMM model in which all parameters (class probabilities, class centroids
and class covariances) can be varied.
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(a) Using the same notation and the same assumptions, sketch the globally maximally
likely mixture of two Gaussians.
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(b) Using the same notation and the same assumptions, sketch a mixture of three distinct
Gaussians that is stuck in a suboptimal configuration (i.e. in which infinitely many
more iterations of the EM algorithm would remain in essentially the same suboptimal
configuration). (You must not give an answer in which two or more Gaussians all have
the same mean vectors—we are looking for an answer in which all the Gaussians have
distinct mean vectors).
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(c) Using the same notation and the same assumptions, sketch the globally maximally
likely mixture of two Gaussians in the following, new, dataset.

w
|

N
|

Y (output) -->
=
|
[ ]
H
L]
[ ]
[ ]
[ ]
[ ]

o

0 1 2 3
X (input) --->

(d) Now, suppose we ran k-means with k£ = 2 on this dataset. Show the rough locations of
the centers of the two clusters in the configuration with globally minimal distortion.
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6 Regression algorithms

For each empty box in the following table, write in “Y” if the statement at the top of the
column applies to the regression algorithm. Write “N” if the statement does not apply.

No matter what the training
data is, the predicted output is
guaranteed to be a continuous
function of the input. (i.e. there
are no discontinuities in the pre-
diction). If a predictor gives
continuous but undifferentiable
predictions then you should an-

INSRNTS Yol)
swer  x .

The cost of training on a dataset
with R records is at least
O(R?): quadratic (or worse)
in R. For iterative algorithms
marked with (*) simply consider
the cost of one iteration of the
algorithm through the data.

Linear Regression

Quadratic Regression

Perceptrons with sigmoid acti-
vation functions (*)

1-hidden-layer Neural Nets with
sigmoid activation functions (*)

1-nearest neighbor

10-nearest neighbor

Kernel Regression

Locally Weighted Regression

Radial Basis Function Regres-
sion with 100 Gaussian basis
functions

Regression Trees

Cascade correlation (with sig-
moid activation functions)

Multilinear interpolation

MARS




7 Hidden Markov Models
Warning: this is a question that will take a few minutes if you really understand HMMs, but

could take hours if you don’t. Assume we are working with this HMM
1/2 1/2 1

Cy 5
g

Start Here with Prob. 1

011:1/2 a12=1/2 a13:() bl(X)
a21=0 a22=1/2 a23:1/2 bQ(X)
asy — 0 39 = 0 a33 = 1 b3(X)
Where

172 b(Y)=1/2 b(2)=0 [m=1

a;; = P(Qt+1 S|Qt Si)

Suppose we have observed this sequence
XZXYYZYZZ

(in long-hand: Oy = X,0, = 2,03 =X,0,=Y,05=Y,06 = Z,0; =Y,05 = Z,09 = 7).
Fill in this table with a4(7) values, remembering the definition:

Odz(t) = P(01 N 02 N Ot A qr = Si)

So for example,
043(2) IP(01 :X/\OQIZ/\O3=X/\Q3:SQ)

ar(1) | cu(2) | au(3)

OO0 || U x| W N =]




8 Locally Weighted Regression

Here’s an argument made by a misguided practitioner of Locally Weighted Regression.

Suppose you have a dataset with R; training points and another dataset with R,
test points. You must predict the output for each of the test points. If you use a
kernel function that decays to zero beyond a certain Kernel width then Locally
Weighted Regression is computationally cheaper than regular linear regression.
This is because with locally weighted regression you must do the following for
each query point in the test set,

e Find all the points that have non-zero weight for this particular query.

e Do a linear regression with them (aft

ppropriately).
e Predict the value of the query.

99

to the regression

whereas with regular linear regression you must do the following for each query
point:

e take all the training set datapoints.

e Do an unweighted linear regression with them.

e Predict the value of the query.
The locally weighted regression frequently finds itself doing regression on only a
tiny fraction of the datapoints because most have zero weight. So most of the
local method’s queries are cheap to answer. In contrast, regular regression must

use every single training point in every single prediction and so does at least as
much work, and usually more.

This argument has a serious error. Even if it is true that the kernel function causes almost
all points to have zero weight for each LWR query the argument is wrong. What is the error?



9 Nearest neighbor and cross-validation

At some point during this question you may find it useful to use the fact that if U and V" are
two independent real-valued random variables then Var{aU + V| = a? Var[U] + b Var[V].

Suppose you have 10,000 datapoints {(zx, yx) : K = 1,2,...,10000}. Your dataset has one
input and one output. The kth datapoint is generated by the following recipe:

2 = k/10000
Y o~ N(O722)

So that y; is all noise: drawn from a Gaussian with mean 0 and variance ¢ = 4 (and
standard deviation o = 2). Note that its value is independent of all the other y values. You

H alyarithra:

naidoring twa laar
QAering two i1€ariii

arn cnngl "o o
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e Algorithm NN: 1-nearest neighbor.

e Algorithm Zero: Always predict zero.

(a) What is the expected Mean Squared Training Error for Algorithm NIN?7

What is the expected Mean Squared Training Error for Algorithm Zero?

—~
-
=

(¢) What is the expected Mean Squared Leave-one-out Cross-validation Error for Algo-
rithm NN?

(d) What is the expected Mean Squared Leave-one-out Cross-validation Error for Algo-
rithm Zero?



10 Neural Nets

(a) Suppose we are learning a 1-hidden-layer neural net with a sign-function activation

Sign(z) = 1 ifz>0
Sign(z) = —1 if2<0

Xl hl=sign(wll x1 + w2l x2) Wl =
wl2 =

- Output =

w2l = / \ / Wi hl +

h2=sign(wl2 x1 + w22 x2) W2 =

2

w22 =

h

2

We give it this training set, which represents the exclusive-or function if you interpret
-1 as false and +1 as true:

X | Xy | Y
1(-1

1] -1|1
-1 111
-1 -1]-1

On the diagram above you must write in six numbers: a set of weights that would give
zero training error. (Note that constant terms are not being used anywhere, and note
too that the output does not need to go through a sign function). Or..if it impossible
to find a satisfactory set of weights, just write “impossible”.

(b) You have a dataset with one real-valued input x and one real-valued output y in which
you believe
yr = exp(wzy) + €

where (xy, yx) is the kth datapoint and ¢ is Gaussian noise. This is thus a neural net
with just one weight: w.

Give the update equation for a gradient descent approach to finding the value of a that
minimizes the mean squared error.




11 Support Vector Machines

Consider the following dataset. We are going to learn a linear SVM from it of the form
f(z) = sign(wx + b).

Denotes
OClass -1 x X
1 |-1
e Denotes
Class 1 2 -1
3.5 -1
1
‘ o o) o e ° 5 |1
0 \ T T \ T
0 1 2 3 4 5
X (input) -—-——>

(a) What values for w and b will be learned by the linear SVM?

(b) What is the training set error of the above example? (expressed as the percentage of
training points misclassified)

(c) What is the leave-one-out cross-validation error of the above example? (expressed as
the percentage of left-out points misclassified)
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expensive, even on a supercomputer, to do the following:

~~
(@R
SN——

Given a dataset with 200 datapoints and 50 attributes learn an SVM classifier
with full 20th-degree-polynomial basis functions and then apply what you’ve
learned to predict the classes of 1000 test datapoints.



12 VC Dimension

(a) Suppose we have one input variable z and one output variable y. We are using the
machine f)(z, a) = sign(x + ). What is the VC dimension of f,?

(b) Suppose we have one input variable x and one output variable y. We are using the
machine fo(z, ) = sign(ax + 1). What is the VC dimension of f,?

(¢) Now assume our inputs are m-dimensional and we use the following two-level, two-
choice decision tree to make our classification:

is x[A] < B?
/ \
if no / \ if yes
/ \
is x[C] < D7 is x[E] < F7?
/ \ / \
if no / \ if yes if no/ \ if yes
/ \ / \
/ \ / \
Predict Predict Predict  Predict
Class G Class H Class I Class J

Where the machine has 10 parameters

e {1,2,..,m}
S
{1,2,....,m}
R
{1,2,....,m}
R

{_17 1}
{_17 1}
{-1,1}
{_17 1}

What is the VO-dimension of this machine?
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