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At Pittsburgh G-20 summit ...




Linear classifiers — which line is
better?




Pick the one with the largest margin!



Parameterizing the decision boundary
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Maximizing the margin
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Maximizing the margin
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Support Vector Machines
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wXxX+b>0

Support Vectors

wXx+b<0
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Linear hyperplane defined by
“support vectors”

Moving other points a little
doesn’t effect the decision

boundary

only need to store the
support vectors to predict
labels of new points

How many support vectors
in linearly separable case,
given d dimensions?



What if data is not linearly separable?

Use features of features
+ of features of features....

2 2
X1%) X%, X1 Xy, wee, €XP(X)

But run risk of overfitting!
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What if data is not linearly separable?

Allow “error” in classification
min w.w + C tmistakes
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0/1 loss (doesn’t distinguish between
near miss and bad mistake) "



What if data is not linearly separable?

Allow “error” in classification

Soft margin approach

min ww+CZE
w,b,&

st(wx+b)yJ 1-§ V]
20 V]

G - “slack” variables
= (>1 if x; misclassifed)
pay linear penalty if mistake

C - tradeoff parameter (chosen by
cross-validation)

stillQP ©
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Soft-margin SVM

9 O<fj<1

Soften the constraints:

(w.x;+b) y; 2 1-¢ V]
=20 V]

Penalty for misclassifying:
C§

How do we recover hard
margin SVM?
SetC=o0
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Soft-margin SVM

Soften the constraints:

9 O<fj<1

(w.x;+b) y; 2 1-¢ V]
= =20 V]

Penalty for misclassifying:
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Support Vectors

Soften the constraints:

(w.x;+b) y; 2 1-¢ V]
= =20 V]

Penalty for misclassifying:
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Slack variables — Hinge loss

Regularization loss
Regularized loss function —— —

& =loss(f(x;),y;) < mblrg W.W + CZE
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f(z;) =sgn(w-x;+b)

& =1 —(w-z; +by;))+ Hinge loss

0-1 loss

-1 0 1 (w - T+ b)yj 16



SVM vs. Logistic Regression

SVM : Hinge loss
loss(f(zj),y;) = (1 —(w-z; +0)y;))+

Logistic Regression : Log loss ( -ve log conditional likelihood)

Log loss \\ Hinge loss

0-1 loss

-1 0 1 (W-z; +b)y;
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What about multiple classes?
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One against rest

Learn 3 classifiers
separately:
Class k vs. rest

(w,, bk)k=1,2,3

y =arg mEx w,.X + b,

But w,s may not be
based on the same scale.
Note: (aw).x + (ab) is also
a solution
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Learn 1 classifier: Multi-class SVM

Simultaneously learn 3 sets of weights
. . / / ,
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Learn 1 classifier: Multi-class SVM

Simultaneously learn 3 sets of weights

minimizey;, %, w(®) w) 4 CY5 Systy, 53('y)
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What you need to know

Maximizing margin
Derivation of SVM formulation
Slack variables and hinge loss

Relationship between SVMs and logistic regression
— 0/1 loss

— Hinge loss

— Log loss

Tackling multiple class

— One against All

— Multiclass SVMs
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SVMs reminder

Regularization Hinge loss
| |

min w.w + C 2§,
w,b, &

- s.t. (w.x+b) y; 2 1-§ V]
- 20 V]

Essentially a constrained
optimization problem!

Soft margin approach

23



Constrained Optimization
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Constrained Optimization

o = 0 constraint is ineffective
o > 0 constraint is effective

Primal problem:
Ming T2
s.t. x>0

Moving the constraint to objective function
Lagrangian:

L(z,a) = 2% — a(z —b)
s.t. >0

Dual problem:

ming L(x, o
maxq d(a)” " ()

s.t. >0
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Dual SVM - linearly separable case

* Primal problem: minimizey, %w.w

(W.Xj —+ b) y; > 1, Vg

w - weights on features

* Lagrangian:

L(w,b,a) = %W.W — > Q; KW.XJ- + b) Y — 1}

Oéj Z O, \V/]
a - weights on training pts

a; = 0 constraint is ineffective (w.x+b)y; >1 (not a support vector)
a; >0 constraint is effective  (w.x;+b)y,=1 (point jis a support vector)



Dual SVM - linearly separable case

* Dual problem:

MaXq MiNg p L(W, b, o) = %W.W — 2.5 QO [(W.Xj + b) Yj — 1}

OéjZO, V]

oL

Tw =0 — W — Z QY ;X If we can solve for
w j as (dual problem),
ar then we have a
0 - au: = 0 solution for w,b
ob Z 7Y (primal problem)
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Dual SVM - linearly separable case

* Dual problem:

MaXq MiNg p L(W, b, o) = %W.W — 2.5 QO [(W.Xj + b) Yj — 1}
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@ W= Z XjYj%i 2 ajy; =0
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Dual SVM - linearly separable case

L 1
MaxXimilIZEy ZZ Qa; — 5 Zz,j Q;0GY;Y XX

D i Oy =
047; > O

Dual problem is also QP

W= ) oYX,

(2

Solution gives as

w.x tb =y, (w.x +b)y, =1

b=y — W.Xp

for any k where a5 > 0

Use support vectors to compute b



Dual SVM Interpretation: Sparsity

W= ) ajyiX;
;

Only few ays can be
non-zero : where
constraint is tight

(w.x; + by, = 1

Support vectors —
training points j whose
QS are non-zero
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Dual SVM - non-separable case

* Primal problem:
minimizey, , sw.w+CY,&;

(wx;+b)y; >1—¢, Vj &
§; 20, Vj Hj
Lagrange
* Dual problem: Multipliers

MaXeq,, Ming 5 L(wW, b, a, 1)
st.a; >0 Vg
pi >0 Vj
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Dual SVM - non-separable case

L 1
MaxXimizZeq Zz Q; — 5 Zz,] Q0 5YY XK. X

> 0y; =0
[Chuzo
comes from oL _ 0 Intuition:
ou B Earlier - If constraint violated, o, >e°

Now - If constraint violated, o, < C

Dual problem is also QP W = Z QY X

()
b= Y — W.XL

for any k where C' > ap. > 0

Solution gives a;s >




So why solve the dual SVM?

* There are some quadratic programming
algorithms that can solve the dual faster than
the primal, specially in high dimensions m>>n

* But, more importantly, the “kernel trick”!!!
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