Semi-Supervised Learning

Aarti Singh

Machine Learning 10-601 Dec 1, 2011

Slides Courtesy: Jerry Zhu

Supervised Learning

Feature Space \mathcal{X}

Label Space \mathcal{Y}

Goal: Construct a **predictor** $f: \mathcal{X} \to \mathcal{Y}$ to minimize

$$R(f) \equiv \mathbb{E}_{XY} \left[loss(Y, f(X)) \right]$$

Optimal predictor (Bayes Rule) depends on unknown P_{XY} , so instead *learn* a good prediction rule from training data $\{(X_i, Y_i)\}_{i=1}^n \stackrel{\text{iid}}{\sim} P_{XY}(\text{unknown})$

Training data
$$\square$$
 Learning algorithm \square Prediction rule $\{(X_i,Y_i)\}_{i=1}^n$

Labeled

Training data

"Crystal" "Needle" "Empty"

"0" "1" "2" ...

com in the common in the

Human expert/
Special equipment/
Experiment

"Sports"
"News"
"Science"

. . .

Unlabeled data, X_i

Labeled data, Y_i

Cheap and abundant!

Expensive and scarce!

Free-of-cost labels?

Luis von Ahn: Games with a purpose (ReCaptcha)

Email address		
Password		
STA	EDIA. IIDOU	
Type the two words: CRECAPTCHA™ stop spam. read books.		Word rejected by OCR (Optical Character Recogintion) You provide a free label!
LogIn		•

Semi-Supervised learning

Training data
$$\square$$
 Learning algorithm \square Prediction rule $\{(X_i,Y_i)\}_{i=1}^n$ $\widehat{f}_{n,m}$ $\{X_i\}_{i=1}^m$

Supervised learning (SL)

Labeled data $\{X_i, Y_i\}_{i=1}^n$

"Crystal"

 X_i

 Y_i

Semi-Supervised learning (SSL)

Labeled data $\{X_i, Y_i\}_{i=1}^n$ and Unlabeled data $\{X_i\}_{i=1}^m$

Goal: Learn a better prediction rule than based on labeled data alone.

Semi-Supervised learning in Humans

Cognitive science

Computational model of how humans learn from labeled and unlabeled data.

- concept learning in children: x=animal, y=concept (e.g., dog)
- Daddy points to a brown animal and says "dog!"
- Children also observe animals by themselves

Can unlabeled data help?

- Positive labeled data
- Negative labeled data
- Unlabeled data

Assume each class is a coherent group (e.g. Gaussian)

Then unlabeled data can help identify the boundary more accurately.

Can unlabeled data help?

Unlabeled Images

Labels "0" "1" "2" ...

"Similar" data points have "similar" labels

Some SSL Algorithms

Generative methods – assume a model for p(x,y) and maximize joint likelihood

Mixture models

- Graph-based methods assume the target function p(y|x) is smooth wrt a graph or manifold
 Graph/Manifold Regularization
- Multi-view methods multiple independent learners that agree on prediction for unlabeled data
 Co-training

Some SSL Algorithms

Generative methods – assume a model for p(x,y) and maximize joint likelihood

Mixture models

- Graph-based methods assume the target function p(y|x) is smooth wrt a graph or manifold
 Graph/Manifold Regularization
- Multi-view methods multiple independent learners that agree on prediction for unlabeled data
 Co-training

Labeled data (X_l, Y_l) :

Assuming each class has a Gaussian distribution, what is the decision boundary?

Model parameters: $\theta = \{w_1, w_2, \mu_1, \mu_2, \Sigma_1, \Sigma_2\}$ The GMM:

$$p(x, y|\theta) = p(y|\theta)p(x|y, \theta)$$
$$= w_y \mathcal{N}(x; \mu_y, \Sigma_y)$$

Classification: $p(y|x,\theta) = \frac{p(x,y|\theta)}{\sum_{y'} p(x,y'|\theta)} \ge 1/2$

The most likely model, and its decision boundary:

Adding unlabeled data:

With unlabeled data, the most likely model and its decision boundary:

They are different because they maximize different quantities.

Assumption

knowledge of the model form $p(X, Y|\theta)$.

joint and marginal likelihood

$$p(X_l, Y_l, X_u | \theta) = \sum_{Y_u} p(X_l, Y_l, X_u, Y_u | \theta)$$

- find the maximum likelihood estimate (MLE) of θ , the maximum a posteriori (MAP) estimate, or be Bayesian
- common mixture models used in semi-supervised learning:
 - Mixture of Gaussian distributions (GMM) image classification
 - Mixture of multinomial distributions (Naïve Bayes) text categorization
 - Hidden Markov Models (HMM) speech recognition
- Learning via the Expectation-Maximization (EM) algorithm (Baum-Welch)

Gaussian Mixture Models

Binary classification with GMM using MLE.

- with only labeled data
 - $\blacktriangleright \log p(X_l, Y_l | \theta) = \sum_{i=1}^l \log p(y_i | \theta) p(x_i | y_i, \theta)$
 - ▶ MLE for θ trivial (sample mean and covariance)
- with both labeled and unlabeled data

$$\log p(X_l, Y_l, X_u | \theta) = \sum_{i=1}^l \log p(y_i | \theta) p(x_i | y_i, \theta)$$
$$+ \sum_{i=l+1}^{l+u} \log \left(\sum_{y=1}^2 p(y | \theta) p(x_i | y, \theta) \right)$$

► MLE harder (hidden variables): EM

EM for Gaussian Mixture Models

- Start from MLE $\theta = \{w, \mu, \Sigma\}_{1:2}$ on (X_l, Y_l) ,
 - w_c =proportion of class c
 - \blacktriangleright μ_c =sample mean of class c
 - $ightharpoonup \Sigma_c$ =sample cov of class c

repeat:

- ② The E-step: compute the expected label $p(y|x,\theta) = \frac{p(x,y|\theta)}{\sum_{y'} p(x,y'|\theta)}$ for all $x \in X_u$
 - ▶ label $p(y = 1|x, \theta)$ -fraction of x with class 1
 - ▶ label $p(y = 2|x, \theta)$ -fraction of x with class 2
- **3** The M-step: update MLE θ with (now labeled) X_u

EM for GMMs: Example

 $P(y = | x_j, \mu_1, \mu_2, \mu_3, \Sigma_1, \Sigma_2, \Sigma_3, w_1, w_2, w_3)$

After 1st iteration

After 2nd iteration

After 3rd iteration

After 4th iteration

After 5th iteration

After 6th iteration

After 20th iteration

Assumption for GMMs

- **Assumption**: the data actually comes from the mixture model, where the number of components, prior p(y), and conditional $p(\mathbf{x}|y)$ are all correct.
- When the assumption is wrong:

Assumption for GMMs

Assumption for GMMs

Heuristics to lessen the danger

- Carefully construct the generative model, e.g., multiple Gaussian distributions per class
- Down-weight the unlabeled data ($\lambda < 1$)

$$\log p(X_l, Y_l, X_u | \theta) = \sum_{i=1}^l \log p(y_i | \theta) p(x_i | y_i, \theta)$$
$$+ \frac{\lambda}{\lambda} \sum_{i=l+1}^{l+u} \log \left(\sum_{y=1}^2 p(y | \theta) p(x_i | y, \theta) \right)$$

Related: Cluster and Label

Input: $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_l, y_l), \mathbf{x}_{l+1}, \dots, \mathbf{x}_{l+u},$ a clustering algorithm \mathcal{A} , a supervised learning algorithm \mathcal{L}

- 1. Cluster $\mathbf{x}_1, \ldots, \mathbf{x}_{l+u}$ using \mathcal{A} .
- 2. For each cluster, let S be the labeled instances in it:
- 3. Learn a supervised predictor from S: $f_S = \mathcal{L}(S)$.
- 4. Apply f_S to all unlabeled instances in this cluster.

Output: labels on unlabeled data y_{l+1}, \ldots, y_{l+u} .

But again: **SSL** sensitive to assumptions—in this case, that the clusters coincide with decision boundaries. If this assumption is incorrect, the results can be poor.

Cluster-and-label: now it works, now it doesn't

Example: A=Hierarchical Clustering, \mathcal{L} =majority vote.

Some SSL Algorithms

Generative methods – assume a model for p(x,y) and maximize joint likelihood

Mixture models

- Graph-based methods assume the target function p(y|x) is smooth wrt a graph or manifold
 Graph/Manifold Regularization
- Multi-view methods multiple independent learners that agree on prediction for unlabeled data
 Co-training

Graph Regularization

Assumption: Similar unlabeled data have similar labels.

Handwritten digits recognition with pixel-wise Euclidean distance

Graph Regularization

Similarity Graphs: Model local neighborhood relations between data points

- Nodes: $X_l \cup X_u$
- Edges: similarity weights computed from features, e.g.,
 - ▶ k-nearest-neighbor graph
 - fully connected graph, weight decays with distance $w_{ij} = \exp(-\|x_i x_j\|^2/\sigma^2)$
 - $ightharpoonup \epsilon$ -radius graph

Graph Regularization

If data points i and j are similar (i.e. weight w_{ij} is large), then their labels are similar $f_i = f_i$

$$\min_{f} \sum_{i \in l} (y_i - f_i)^2 + \lambda \sum_{i,j \in l,u} w_{ij} (f_i - f_j)^2$$
 Loss on labeled data (mean square,0-1) Graph based smoothness prior on labeled and unlabeled data

If labels are binary +1/-1,

Minimization = min-cut on a modified graph - add source and sink nodes with large weight to labeled examples.

Some SSL Algorithms

Generative methods – assume a model for p(x,y) and maximize joint likelihood

Mixture models

- Graph-based methods assume the target function p(y|x) is smooth wrt a graph or manifold
 Graph/Manifold Regularization
- Multi-view methods multiple independent learners that agree on prediction for unlabeled data

Co-training

Two views of an Instance

Example: named entity classification Person (Mr. Washington) or Location (Washington State)

```
instance 1: ... headquartered in (Washington State) ... instance 2: ... (Mr. Washington), the vice president of ...
```

- ullet a named entity has two views (subset of features) ${f x}=[{f x}^{(1)},{f x}^{(2)}]$
- ullet the words of the entity is ${f x}^{(1)}$
- the context is $\mathbf{x}^{(2)}$

Two views of an Instance

```
instance 1: ... headquartered in (Washington State)^L ... instance 2: ... (Mr. Washington)^P, the vice president of ... test: ... (Robert Jordan), a partner at ... test: ... flew to (China) ...
```

Two views of an Instance

```
With more unlabeled data instance 1: ... headquartered in (Washington State)^L ... instance 2: ... (Mr. Washington)^P, the vice president of ... instance 3: ... headquartered in (Kazakhstan) ... instance 4: ... flew to (Kazakhstan) ... instance 5: ... (Mr. Smith), a partner at Steptoe & Johnson ... test: ... (Robert Jordan), a partner at ... test: ... flew to (China) ...
```

Co-training Algorithm

Blum & Mitchell'98

Input: labeled data $\{(\mathbf{x}_i, y_i)\}_{i=1}^l$, unlabeled data $\{\mathbf{x}_j\}_{j=l+1}^{l+u}$ each instance has two views $\mathbf{x}_i = [\mathbf{x}_i^{(1)}, \mathbf{x}_i^{(2)}]$, and a learning speed k.

- 1. let $L_1 = L_2 = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_l, y_l)\}.$
- 2. Repeat until unlabeled data is used up:
- 3. Train view-1 $f^{(1)}$ from L_1 , view-2 $f^{(2)}$ from L_2 .
- 4. Classify unlabeled data with $f^{(1)}$ and $f^{(2)}$ separately.
- Add $f^{(1)}$'s top k most-confident predictions $(\mathbf{x}, f^{(1)}(\mathbf{x}))$ to L_2 . Add $f^{(2)}$'s top k most-confident predictions $(\mathbf{x}, f^{(2)}(\mathbf{x}))$ to L_1 . Remove these from the unlabeled data.

Co-training

Assumptions

- feature split $x = [x^{(1)}; x^{(2)}]$ exists
- ullet $x^{(1)}$ or $x^{(2)}$ alone is sufficient to train a good classifier
- $x^{(1)}$ and $x^{(2)}$ are conditionally independent given the class

Semi-Supervised Learning

- Generative methods Mixture models
- Graph-based methods Manifold Regularization
- Multi-view methods Co-training
- Semi-Supervised SVMs assume unlabeled data from different classes have large margin
- Many other methods

SSL algorithms can use unlabeled data to help improve prediction accuracy if data satisfies appropriate assumptions