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Supervised Learning
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Feature Space X
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Label Space YV

Goal:Construct a predictor f: X — Y to minimize

R(f) = Exy [loss(Y, f(X))]
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Optimal predictor (Bayes Rule) depends on unknown Py, so instead learn a
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good prediction rule from training data{(X;,Y;)};—1 ~ Pxy(unknown)
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Training data
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Human expert/ "Sports”
Special equipment/ "News”
Experiment Science
Unlabeled data, X; Labeled data, Y;

Cheap and abundant ! Expensive and scarce |



Free-of-cost labels?

Luis von Ahn: Games with a purpose (ReCaptcha)

Email address

Passwaord
| ~ Word rejected by OCR
Type the two words: :ﬂ CAPTCHA (Optical Character Recogintion)
o read BOOKS.

You provide a free label!

: Log In



Semi-Supervised learning

Training data |:> Learning algorithm |:> Prediction rule
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Supervised learning (SL) »
Labeled data {X;,Y;}" /Jg‘ﬁ “Crystal”
X; Y;

Semi-Supervised learning (SSL)
Labeled data {X;,Y;}!*; and Unlabeled data {X;}™, @

Goal: Learn a better prediction rule than based on labeled data alone.




Semi-Supervised learning in Humans

Cognitive science

Computational model of how humans learn from labeled and unlabeled
data.

@ concept learning in children: x=animal, y=concept (e.g., dog)
@ Daddy points to a brown animal and says “dog!”

@ Children also observe animals by themselves




Can unlabeled data help?

® Positive labeled data
@ Negative labeled data
Unlabeled data

Supervised Decision Boundary

Assume each class is a coherent group (e.g. Gaussian)

Then unlabeled data can help identify the boundary more accurately.



Can unlabeled data help?

Unlabeled Images

“Similar” data points have “similar” labels



Some SSL Algorithms

» Generative methods — assume a model for p(x,y) and maximize

joint likelihood
Mixture models

» Graph-based methods — assume the target function p(y|x) is

smooth wrt a graph or manifold
Graph/Manifold Regularization

= Multi-view methods — multiple independent learners that agree

on prediction for unlabeled data
Co-training
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Mixture Models

Labeled data (X}, Y}):

-4

-5 1 1 1 L L 1 1 1 1
-5 -4 -3 -2 -1 0 1 2 3 4 5

Assuming each class has a Gaussian distribution, what is the decision
boundary?



Mixture Models

Model parameters: 6 = {wq, wa, ji1, pra, X1, Lo}
The GMM:

p(x.yl0) = p(yl@)p(xly.0)
= wyN (2] 1y, Xy)

Classification: p(y|z,0) = sz(zgjizalrlz)’lé)) > 1/2
Y b



Mixture Models

The most likely model, and its decision boundary:
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Mixture Models

Adding unlabeled data:




Mixture Models

With unlabeled data, the most likely model and its decision boundary:
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Mixture Models

p(X1. Y110)

1 2 3 < s

They are different because they maximize different quantities.

(X7, Y. Xy |0)

1 2 3 - s



Mixture Models

Assumption
knowledge of the model form p(X,Y|0).

@ joint and marginal likelihood

p(X0. Y, Xulf) = > p(X1.Y7, X, Yal6)
Yo
e find the maximum likelihood estimate (MLE) of ¢, the maximum a
posteriori (MAP) estimate, or be Bayesian

@ common mixture models used in semi-supervised learning:
» Mixture of Gaussian distributions (GMM) — image classification
» Mixture of multinomial distributions (Naive Bayes) — text
categorization

» Hidden Markov Models (HMM) — speech recognition

@ Learning via the Expectation-Maximization (EM) algorithm
(Baum-Welch)



Gaussian Mixture Models

Binary classification with GMM using MLE.
@ with only labeled data

> log (X1, Yi[0) = 3., log p(yil0)p(xiyi. 0)
» MLE for @ trivial (sample mean and covariance)

@ with both labeled and unlabeled data
log p(X1, Y, Xul6) = 325 log p(yil)p(i[ i, 0)

+ Zi;;l—l log (ijl p(y|0)p(x;|y. F)))
» MLE harder (hidden variables): EM



EM for Gaussian Mixture Models

@ Start from MLE 0 = {w, u, X }1.9 on (X3, Y)),
» w,.=proportion of class ¢
» .=sample mean of class ¢
» Y .=sample cov of class ¢

repeat:

p(fc,y|9), for
o, P(z:y']0)

@ The E-step: compute the expected label p(y|z.0) = 5=

all z € X,
» label p(y = 1|z, #)-fraction of = with class 1
» label p(y = 2|z, #)-fraction of = with class 2

© The M-step: update MLE 6 with (now labeled) X,



EM for GMMs: Example

P(y =@ | le M]_I MZI M3121122;Z31W11W21W3)
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After 1%t iteration




After 2" jteration
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Assumption for GMMs

@ Assumption: the data actually comes from the mixture model, where
the number of components, prior p(y), and conditional p(x|y) are all
correct.

@ When the assumption is wrong:
6_




Assumption for GMMs

wrong model, higher log likelihood (-847.9309) correct model, lower log likelihood (-921.143)




Assumption for GMMs

Heuristics to lessen the danger
@ Carefully construct the generative model, e.g., multiple Gaussian
distributions per class

@ Down-weight the unlabeled data (A < 1)
log p(Xi. Y1, Xul6) = 325y Log p(yil0)p(xilyi. 0)
AL log (S p(yl0)p(aily. 6) )



Related: Cluster and Label

Input: (X1, y1), .., (X1, 01), X415 - -, Xl4u
a clustering algorithm A, a supervised learning algorithm L
1. Cluster xX1.....Xj1q using A.

2. For each cluster, let S be the labeled instances in it:
3. Learn a supervised predictor from S: fg = L(5).

4. Apply fg to all unlabeled instances in this cluster.
Output: labels on unlabeled data 4.1, ..., Yl

But again: SSL sensitive to assumptions—in this case, that the clusters
coincide with decision boundaries. If this assumption is incorrect, the
results can be poor.



Cluster-and-label: now it works, now it doesn't

Example: A=Hierarchical Clustering, L=majority vote.

Partially labeled data

single linkage

Single linkage clustering
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Some SSL Algorithms

» Generative methods — assume a model for p(x,y) and maximize

joint likelihood
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Graph Regularization

Assumption: Similar unlabeled data have similar labels.

Handwritten digits recognition with pixel-wise Euclidean distance

GA IS LA

not similar ‘Indirectly’ similar
with stepping stones




Graph Regularization

Similarity Graphs: Model local neighborhood relations between data points

@ Nodes: X; U X,

o Edges: similarity weights computed from features, e.g.,

» k-nearest-neighbor graph
» fully connected graph, weight decays with distance

wij = exp (—|z; — z;(*/0?) e
» e-radius graph P L )
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Graph Regularization

If data points i and j are similar (i.e. weight w; is large), then their labels
are similar f; = f;

mmZ(yz 2N > wi(fi— f5)°

zEl , b5 el,u | ’
Loss on labeled data Graph based smoothness prior
(mean square,0-1) on labeled and unlabeled data

If labels are binary +1/-1,

Minimization = min-cut on a modified graph - add source and sink nodes
with large weight to labeled examples.

Blum & Chawla’01
Source

+1
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Two views of an Instance

Example: named entity classification Person (Mr. Washington) or
Location (Washington State)

instance 1: ... headquartered in (Washington State) ...
instance 2: ... (Mr. Washington), the vice president of ...

® a named entity has two views (subset of features) x = [x(1), x(?)]

o the words of the entity is x(!)

e the context is x(?)



Two views of an Instance

instance 1: ... headquartered in (Washington State)” ...
instance 2: ... (Mr. Washington)?’, the vice president of ...
test: ... (Robert Jordan), a partner at ...

test: ... flew to (China) ...




Two views of an Instance

With more unlabeled data

Instance 1:
Instance 2:
Instance 3:
Instance 4:
Instance 5:

test:
test:

. headquartered in (Washington State)® ...

. (Mr. Washington)?’, the vice president of ...
. headquartered in (Kazakhstan) ...

. flew to (Kazakhstan) ...
. (Mr. Smith), a partner at Steptoe & Johnson ...

... (Robert Jordan), a partner at ...
. flew to (China) ...




Co-training Algorithm

Blum & Mitchell’98

Input: labeled data {(x;,;)},_;, unlabeled data {XJ}g—:lt-i-l

each instance has two views x; = [xgl),x?)],
and a learning speed £.
1. let Ly = Ly = {(Xl.‘yl)....,(Xl.yl)}.
2. Repeat until unlabeled data is used up:
3. Train view-1 f1) from Ly, view-2 f) from L.
4, Classify unlabeled data with (1) and f(2) separately.
5. Add f()'s top k most-confident predictions (x. f(V(x)) to Lo.

Add £(?)'s top k most-confident predictions (x. f¥(x)) to L.

Remove these from the unlabeled data.



Co-training

Assumptions
o feature split z = [z(1); 2(?)] exists
o z(1) or 22 alone is sufficient to train a good classifier

o (1) and 22 are conditionally independent given the class

X1 view




Semi-Supervised Learning

Generative methods — Mixture models

Graph-based methods — Manifold Regularization

Multi-view methods — Co-training

Semi-Supervised SVMs — assume unlabeled data from different
classes have large margin

Many other methods

SSL algorithms can use unlabeled data to help improve
prediction accuracy if data satisfies appropriate assumptions



