10-601 Review

Tom Mitchell and Aarti Singh

Machine Learning 10-601 Dec 8, 2011

Machine Learning Algorithm

Goal: Learn a rule $Z \rightarrow f(Z)$ that optimizes some objective – loss(f(Z)).

Z can be X or (X,Y) modeled as a random variable, and we optimize $E_Z[loss(f(Z))]$

Training Data
$$\square$$
 Learning algorithm \square Rule \widehat{f}_n

Why do we need training data?

Modeling Distributions

Beta, Dirichlet (conjugate prior for binomial, multinomial), Poisson, ...

If θ is a random variable, $P_{\theta}(Z) = P(Z|\theta)$ likelihood

Bayes Rule:
$$P(\theta|Z) = P(Z|\theta) P(\theta)$$
 posterior $P(Z)$

Modeling Distributions

Conditional independence assumptions for joint distributions:

Markov Models

$$p(\mathbf{X}) = \prod_{i=1}^{n} p(X_i|X_{i-1})$$

Hidden Markov Models

$$p(\mathbf{X}, \mathbf{Z}) = \prod_{i=1}^{n} p(X_i|Z_i) \prod_{i=1}^{n} p(Z_i|Z_{i-1})$$

Bayes Nets/Graphical models

$$p(\mathbf{X}) = \prod_{i=1}^{n} p(X_i | pa(X_i))$$

Machine Learning Problems

Broad categories -

Unsupervised learning

Density estimation, Clustering, Dimensionality reduction

Supervised learning

Classification, Regression

- Semi-supervised learning
- Active learning
- •Many more ...

Unsupervised & Supervised Learning

Unsupervised Learning – Learning without a teacher

$$\{X_i\}_{i=1}^n$$
 Learning algorithm $\longrightarrow \widehat{f}n$ Model for word distribution OR Clustering of similar documents

Supervised Learning – Learning with a teacher

Semi-supervised & Active Learning

Semi-Supervised Learning – *randomly* labeled examples

Documents

Mapping between **Documents and topics**

Active Learning – *selectively* labeled examples

Unsupervised Learning

Density estimation:

Parametric (MLE, MAP)
Nonparametric (Histogram, Kernel)

Dimensionality reduction:

Feature Selection
Principal Component Analysis (PCA)
Laplacian Eigenmaps

Clustering:

Gaussian mixture models k-means spectral

Supervised Learning

Regression: (Continuous labels, Mean Square Error)

Optimal estimation rule

$$f^*(X) = E[Y|X]$$
 MLE under $P(Y|X) = N(f^*(X), \sigma^2)$

Linear Regression $f(X) = X w, X = [x_1, x_2, ..., x_d]$ Polynomial Regression $X = [x_1^2, x_1x_2, x_2^2, ...]$ Basis Regression $X = [\phi_1(x), \phi_2(x), ..., \phi_d(x)]$

Regularized versions (MAP)

Neural Networks f(X) = nonlinear (combination of multiple logistic units)

Kernel (locally-weighted) - Weighted mean square error

Supervised Learning

<u>Classification:</u> (Discrete labels, Probability of error)

Bayes optimal classification rule

$$f^*(X) = arg max P(Y|X)$$

plug-in MLE, MAP of distribution model Naïve Bayes Decision Trees Logistic Regression k-nearest neighbor SVM Boosting

Comparison Chart for Classification

	Decisi on Trees	K-NN	Gauss Naïve Bayes	Logistic regression	Neural Nwks	нмм	Bayes Net	SVM	Boosting
Gen/Disc									
Loss functions									
Decision boundary									
Output									
Algorithm									
Model Complexity									
Relation to others									
Parametric/ Nonparam									

Some Topics We've Covered (before Midterm)

Decision trees

entropy, mutual info., overfitting

Probability basics

Bayes rule, MLE, MAP, conditional indep.

Naïve Bayes

conditional independence, # of parameters to estimate, decision surface

Logistic regression

form of P(Y|X) generative vs. discriminative

Linear Regression

minimizing sum sq. error (why?) regularization ~ MAP

Sources of Error

unavoidable error, bias, variance

Overfitting, and Avoiding it

priors over H
cross validation
PAC theory: probabilistic bound on overfitting

Bayesian Networks

factored representation of joint distribution, conditional independence assumptions, D-separation inference in Bayes nets learning from fully/partly observed data

PAC Learning

sample complexity probabilistic bounds on error_{train} – error_{true} VC dimension

Some Topics We've Covered (after Midterm)

Hidden Markov Models

time-series/sequential modeling representation, parameters evaluate prob of output sequence decode hidden states learning parameters

Neural Networks

nonlinear classifier
layers of multiple logistic units
training – backpropagation
local minimum

Dimensionality reduction

feature selection
PCA –linear, directions of max
variance, SVD
Laplacian Eigenmaps – nonlinear

Clustering

k-means – isotropic, convex spectral - connectivity based

Nonparametric methods

histogram, kernel density est kernel regression k-NN classifier

Support Vector Machines

hard-margin, soft-margin support vectors dual formulation, kernel trick

Boosting

weak base classifiers trained on reweighted data Adaboost algorithm, exp loss

1. Learning is an optimization problem

- many algorithms are best understood as optimization algs
- what objective do they optimize, and how? Local minima?
- gradient descent/ascent as general fallback approach

1. Learning is an optimization problem

- many algorithms are best understood as optimization algs
- what objective do they optimize, and how?

2. Learning is a parameter estimation problem

- the more training data, the more accurate the statistical estimates
- MLE, MAP, M(Conditional)LE, ...
- to measure accuracy of learned model, we must use test (not train) data

1. Learning is an optimization problem

- many algorithms are best understood as optimization algs
- what objective do they optimize, and how?

2. Learning is a parameter estimation problem

- the more training data, the more accurate the estimates
- MLE, MAP, M(Conditional)LE, ...
- to measure accuracy of learned model, we must use test (not train) data

3. Error arises from three sources

- unavoidable error, bias, variance
- PAC learning theory: probabilistic bound on overfitting: error_{true} error_{train}

Bias and Variance of Estimators

given some estimator Y for some parameter θ, we note Y is a random variable (why?)

```
the <u>bias</u> of estimator Y : E[Y] - \theta the <u>variance</u> of estimator Y E[(Y - E[Y])^2]
```

consider when

- θ is the probability of "heads" for my coin
- Y = proportion of heads observed from 3 flips consider when
- θ is the vector of correct parameters for learner
- Y = parameters output by learning algorithm

1. Learning is an optimization problem

- many algorithms are best understood as optimization algs
- what objective do they optimize, and how?

2. Learning is a parameter estimation problem

- the more training data, the more accurate the estimates
- MLE, MAP, M(Conditional)LE, ...
- to measure accuracy of learned model, we must use test (not train) data

3. Error arises from three sources

- unavoidable error, bias, variance
- PAC learning theory: probabilistic bound on overfitting: error_{true} error_{train}

4. Practical learning requires making assumptions

- Why?
- form of the f:X \rightarrow Y, or P(Y|X) to be learned
- priors on parameters: MAP, regularization
- Conditional independence: Naive Bayes, Bayes nets, HMM's

Other interesting ML topics

- Reinforcement learning
- Transfer learning
- Multi-task learning
- Online learning, ...

Useful tools:

- Matrix factorization
- Matrix completion
- Random projections
- Compressed sensing, ...

Related courses

Regular

- Machine Learning Theory (15-859 B) Avrim Blum
- Statistical Machine Learning (10-702) Larry Wasserman
- Adaptive Control and Reinforcement Learning (16-899 C) -Drew Bagnell
- Probabilistic Graphical Models (10-708) various instructors

New Spring 2012

- Information Processing and Learning (10-704) Aarti Singh
- Machine Learning with Large Datasets (10-605) William Cohen

ML PhD Thesis topics 2010

- Coupled Semi-Supervised Learning Andrew Carlson
- Rare Category Analysis Jingrui He
- Tractable Algorithms for Proximity Search on Large Graphs -Purnamrita Sarkar
- Modeling Purposeful Adaptive Behavior with the Principle of Maximum Causal Entropy - Brian D. Ziebart
- Structural Analysis of Large Networks: Observations and Applications - Mary McGlohon
- Nonparametric Learning in High Dimensions Han Liu