10-601 Review

Tom Mitchell and Aarti Singh

Machine Learning 10-601
Dec 8, 2011
Machine Learning Algorithm

Goal: Learn a rule $Z \rightarrow f(Z)$ that optimizes some objective – $\text{loss}(f(Z))$.

Z can be X or (X,Y) modeled as a random variable, and we optimize $E_Z[\text{loss}(f(Z))]$

Training Data $D = \{Z_i\}_{i=1}^n$ $\xrightarrow{\text{Learning algorithm}}$ Rule \hat{f}_n

Why do we need training data?
Modeling Distributions

Parametric: $P_{\theta}(Z)$

- **Gaussian** – continuous random variables
 μ, σ
- **Bernoulli** – binary/boolean random variable
 θ
- **Binomial** – sum of binary/boolean random variables
 n, θ
- **Multinomial** – sum of k-ary random variables
 $n, \theta_1, \theta_2, \ldots, \theta_k$
- **Beta, Dirichlet** (conjugate prior for binomial, multinomial), **Poisson**, ...

If θ is a random variable, $P_{\theta}(Z) = P(Z|\theta)$ likelihood

Bayes Rule: $P(\theta|Z) = \frac{P(Z|\theta) \ P(\theta)}{P(Z)}$ posterior
Modeling Distributions

Conditional independence assumptions for joint distributions:

- **Markov Models**

 \[p(X) = \prod_{i=1}^{n} p(X_i | X_{i-1}) \]

- **Hidden Markov Models**

 \[p(X, Z) = \prod_{i=1}^{n} p(X_i | Z_i) \prod_{i=1}^{n} p(Z_i | Z_{i-1}) \]

- **Bayes Nets/Graphical models**

 \[p(X) = \prod_{i=1}^{n} p(X_i | pa(X_i)) \]
Machine Learning Problems

Broad categories -

• **Unsupervised learning**

 Density estimation, Clustering, Dimensionality reduction

• **Supervised learning**

 Classification, Regression

• **Semi-supervised learning**

• **Active learning**

• Many more ...
Unsupervised & Supervised Learning

Unsupervised Learning – Learning without a teacher

\[\{X_i\}_{i=1}^n \rightarrow \text{Learning algorithm} \rightarrow \hat{f}_n \]

Documents

Model for word distribution OR Clustering of similar documents

Supervised Learning – Learning with a teacher

\[\{(X_i, Y_i)\}_{i=1}^n \rightarrow \text{Learning algorithm} \rightarrow \hat{f}_n \]

Documents, topics

Mapping between Documents and topics
Semi-supervised & Active Learning

Semi-Supervised Learning – **randomly** labeled examples

\[
\{(X_i, Y_i)\}_{i=1}^n, \quad \{X_j\}_{j=1}^m
\]

Documents, topics

\[
\{(X_i, Y_i)\}_{i=1}^n
\]

Documents, topics

\[
\{X_j\}_{j=1}^m
\]

Documents

\[
\text{Learning algorithm}
\]

\[
\hat{f}_{m,n}
\]

Mapping between Documents and topics

Active Learning – **selectively** labeled examples

\[
\{(X_i, Y_i)\}_{i=1}^n, \quad \{X_j\}_{j=1}^m
\]

Documents, topics

\[
\text{Selectively labeling}
\]

\[
\text{Learning algorithm}
\]

\[
\hat{f}_{m,n}
\]
Unsupervised Learning

Density estimation:
- Parametric (MLE, MAP)
- Nonparametric (Histogram, Kernel)

Dimensionality reduction:
- Feature Selection
- Principal Component Analysis (PCA)
- Laplacian Eigenmaps

Clustering:
- Gaussian mixture models
- k-means
- spectral
Supervised Learning

Regression: (Continuous labels, Mean Square Error)

Optimal estimation rule

\[f^*(X) = \mathbb{E}[Y|X] \quad \text{MLE under } P(Y|X) = \mathcal{N}(f^*(X), \sigma^2) \]

Linear Regression \(f(X) = Xw, \quad X = [x_1, x_2, \ldots, x_d] \)

Polynomial Regression \(X = [x_1^2, x_1x_2, x_2^2, \ldots] \)

Basis Regression \(X = [\phi_1(x), \phi_2(x), \ldots, \phi_d(x)] \)

Regularized versions (MAP)

Neural Networks \(f(X) = \text{nonlinear (combination of multiple logistic units)} \)

Kernel (locally-weighted) - Weighted mean square error
Supervised Learning

Classification: (Discrete labels, Probability of error)

Bayes optimal classification rule

\[f^*(X) = \arg \max_Y P(Y|X) \]

plug-in MLE, MAP of distribution model
Naïve Bayes
Decision Trees
Logistic Regression
k-nearest neighbor
SVM
Boosting
Comparison Chart for Classification

<table>
<thead>
<tr>
<th>Gen/Disc</th>
<th>K-NN</th>
<th>Gauss Naïve Bayes</th>
<th>Logistic Regression</th>
<th>Neural Nwks</th>
<th>HMM</th>
<th>Bayes Net</th>
<th>SVM</th>
<th>Boosting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss functions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decision boundary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Algorithm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model Complexity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relation to others</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parametric/Nonparam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Some Topics We’ve Covered (before Midterm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decision trees</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>entropy, mutual info., overfitting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probability basics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bayes rule, MLE, MAP, conditional indep.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naïve Bayes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conditional independence,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># of parameters to estimate,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>decision surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logistic regression</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>form of $P(Y</td>
<td>X)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>generative vs. discriminative</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear Regression</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>minimizing sum sq. error (why?)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>regularization \sim MAP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sources of Error</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>unavoidable error, bias, variance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overfitting, and Avoiding it</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>priors over H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cross validation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAC theory: probabilistic bound on overfitting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bayesian Networks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>factored representation of joint</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>distribution, conditional independence</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>assumptions, D-separation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>inference in Bayes nets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>learning from fully/partly observed data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAC Learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sample complexity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>probabilistic bounds on $\text{error}{\text{train}} - \text{error}{\text{true}}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VC dimension</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Some Topics We’ve Covered (after Midterm)

- **Hidden Markov Models**
 - time-series/sequential modeling
 - representation, parameters
 - evaluate prob of output sequence
 - decode hidden states
 - learning parameters

- **Neural Networks**
 - nonlinear classifier
 - layers of multiple logistic units
 - training – backpropagation
 - local minimum

- **Dimensionality reduction**
 - feature selection
 - PCA – linear, directions of max variance, SVD
 - Laplacian Eigenmaps – nonlinear

- **Clustering**
 - k-means – isotropic, convex
 - spectral - connectivity based

- **Nonparametric methods**
 - histogram, kernel density est
 - kernel regression
 - k-NN classifier

- **Support Vector Machines**
 - hard-margin, soft-margin
 - support vectors
 - dual formulation, kernel trick

- **Boosting**
 - weak base classifiers trained on re-weighted data
 - Adaboost algorithm, exp loss
Four Fundamentals for ML

1. Learning is an optimization problem
 - many algorithms are best understood as optimization algs
 - what objective do they optimize, and how? Local minima?
 - gradient descent/ascent as general fallback approach
Four Fundamentals for ML

1. Learning is an optimization problem
 - many algorithms are best understood as optimization algs
 - what objective do they optimize, and how?

2. Learning is a parameter estimation problem
 - the more training data, the more accurate the statistical estimates
 - MLE, MAP, M(Conditional)LE, …
 - to measure accuracy of learned model, we must use test (not train) data
Four Fundamentals for ML

1. Learning is an optimization problem
 - many algorithms are best understood as optimization algs
 - what objective do they optimize, and how?

2. Learning is a parameter estimation problem
 - the more training data, the more accurate the estimates
 - MLE, MAP, M(Conditional)LE, …
 - to measure accuracy of learned model, we must use test (not train) data

3. Error arises from three sources
 - unavoidable error, bias, variance
 - PAC learning theory: probabilistic bound on overfitting: $\text{error}_{\text{true}} - \text{error}_{\text{train}}$
Bias and Variance of Estimators

given some estimator Y for some parameter \(\theta \), we note Y is a random variable (why?)

the bias of estimator Y : \(E[Y] - \theta \)
the variance of estimator Y : \(E[(Y - E[Y])^2] \)

consider when

- \(\theta \) is the probability of “heads” for my coin
- \(Y \) = proportion of heads observed from 3 flips

consider when

- \(\theta \) is the vector of correct parameters for learner
- \(Y \) = parameters output by learning algorithm
Four Fundamentals for ML

1. Learning is an optimization problem
 – many algorithms are best understood as optimization algs
 – what objective do they optimize, and how?

2. Learning is a parameter estimation problem
 – the more training data, the more accurate the estimates
 – MLE, MAP, M(Conditional)LE, …
 – to measure accuracy of learned model, we must use test (not train) data

3. Error arises from three sources
 – unavoidable error, bias, variance
 – PAC learning theory: probabilistic bound on overfitting: error_{true} - error_{train}

4. Practical learning requires making assumptions
 – Why?
 – form of the f:X \rightarrow Y, or P(Y|X) to be learned
 – priors on parameters: MAP, regularization
 – Conditional independence: Naive Bayes, Bayes nets, HMM’s
Other interesting ML topics

- Reinforcement learning
- Transfer learning
- Multi-task learning
- Online learning, ...

Useful tools:

- Matrix factorization
- Matrix completion
- Random projections
- Compressed sensing, ...

Related courses

Regular
• Machine Learning Theory (15-859 B) - Avrim Blum
• Statistical Machine Learning (10-702) – Larry Wasserman
• Adaptive Control and Reinforcement Learning (16-899 C) - Drew Bagnell
• Probabilistic Graphical Models (10-708) – various instructors

New Spring 2012
• Information Processing and Learning (10-704) – Aarti Singh
• Machine Learning with Large Datasets (10-605) - William Cohen
ML PhD Thesis topics 2010

• Coupled Semi-Supervised Learning – Andrew Carlson
• Rare Category Analysis - Jingrui He
• Tractable Algorithms for Proximity Search on Large Graphs - Purnamrita Sarkar
• Modeling Purposeful Adaptive Behavior with the Principle of Maximum Causal Entropy - Brian D. Ziebart
• Structural Analysis of Large Networks: Observations and Applications - Mary McGlohon
• Nonparametric Learning in High Dimensions - Han Liu