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Today: Recommended reading:
PAC learning * Mitchell: Ch. 7
+ VC dimension + suggested exercises: 7.1,
72,7.7

PAC Learning Problem Setting

Problem setting:

Set of instances X
Set of hypotheses H = {h: X — {0,1}}
Set of possible target functions C' = {c: X — {0,1}}

Sequence of training instances drawn at random from P(X)
teacher provides noise-free label ¢(x)

Learner outputs a hypothesis h € H such that

h = arg IhrélIl;_l erroryqain(h)




Overfitting

Consider a hypothesis #» and its
- Error rate over training data: erroriqin(h)
« True error rate over all data: erroryy.(h)

We say /& overfits the trainina data if
errorime(h) > erroryqin(h)

Amount of overfitting =
ETTOT trye (h) — ETTO0Ttrain (h)

What it means

[Haussler, 1988]: probability that the version space is not e-exhausted
after m training examples is at most |Hle™ ™

Pr{(3h € H)s.t.(erroryqin(h) = 0)A(errorirye(h) > €)] < |H|e™ ™

!

Suppose we want this probability to be at most 6

1. How many training examples suffice?
1
m > =(In|H| + In(1/6))
€

2. If erroryyqin(h) = 0 then with probability at least (1-9):

errorue(h) < %(m \H| 4 1n(1/5))




Agnostic Learning

So far, assumed ¢ € H
Agnostic learning setting: don’t assume ¢ € H
e What do we want then?

— The hypothesis h that makes fewest errors on
training data

e What is sample complexity in this case?

m> (| H| +1n(1/5)

Here ¢ is the difference between the training error and frue error
of the output hypothesis (the one with lowest training error)

Function Approximation: The BingPicture
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m > =(n |H| +1n(1/5))

PAC Learning

Consider a class C of possible target concepts
defined over a set of instances X of length n, and a
learner L using hypothesis space H.

Definition: C' is PAC-learnable by L using
H if for all ¢ € C, distributions D over X, €
such that 0 < e < 1/2, and § such that
0<d<1/2,

learner L will with probability at least (1 — J)
output a hypothesis h € H such that
errorp(h) < e, in time that is polynomial in
1/e, 1/6, n and size(c).




PAC Learning

Consider a class C' of possible target concepts
defined over a set of instances X of length n, and a
learner L using hypothesis space H.

Definition: C' is PAC-learnable by L using  Sufficient condition:
H if for all ¢ € C, distributions D over X, € Holds if learner L

such that 0 < e < 1/2, and § such that requires only a
0<d<1/2, polynomial number of
learner L will with probability at least (1 4~ 4) i s, G

) processing per
output a hypothesis h € H such that example is polynomial

errorp(h) < e, in time that is polynomial in
1/e, 1/4, n and size(c).

m > ~(n|H| +1n(1/5))

Question: If H={h | h: X = Y} is infinite,
what measure of complexity should we
use in place of |H| ?




m > =(n |H| +1n(1/5))

Question: If H={h | h: X = Y} is infinite,
what measure of complexity should we
use in place of [H| ?

Answer: The largest subset of X for which H can guarantee
zero training error (regardless of the target function c)

m > ~(n|H| +1n(1/5))

Question: If H={h | h: X = Y} is infinite,
what measure of complexity should we
use in place of |H| ?

Answer: The largest subset of X for which H can guarantee
zero training error (regardless of the target function c)

VC dimension of H is the size of this subset




Question: If H={h | h: X = Y} is infinite,
what measure of complexity should we
use in place of [H| ?

Answer: The largest subset of X for which H can guarantee
zero training error (regardless of the target function c)

Informal intuition:

Shattering a Set of Instances

a labeling of each
. . . member of S as
Definition: a dichotomy of a set S'is a positive or negative

partition of S into two disjoint subsets.

Definition: a set of instances S is shattered
by hypothesis space H if and only if for every
dichotomy of S there exists some hypothesis
in H consistent with this dichotomy.

Instance space X




The Vapnik-Chervonenkis Dimen-
sion

Definition: The Vapnik-Chervonenkis
dimension, VC(H), of hypothesis space H
defined over instance space X is the size of
the largest finite subset of X shattered by H.
If arbitrarily large finite sets of X can be
shattered by H, then VC(H) = cc.

Instance space X

VC(H)=3

Sample Complexity based on VC dimension

How many randomly drawn examples suffice to e-exhaust
VS, p with probability at least (1-3)?

ie., to guarantee that any hypothesis that perfectly fits the
training data is probably (1-8) approximately (g) correct

m > 2(41095(2/5) + 8VC(H) 1095(13/6))

Compare to our earlier results based on |H|:

m > %(In(l/&) + In|HJ)




VC dimension: examples

Consider X = <, want to learn c:X->{0,1}
What is VC dimension of o e X

* Open intervals:
Hl: ifz >atheny=1else y=0

H2: ifz >a theny=1else y=0
or, ifx >atheny=0¢lsey=1

* Closed intervals:
H3: ifa<zxz<btheny=1lelse y=0

H4: ifa<x<btheny=1else y=20
or, ifa<z<btheny=O0elsey=1

VC dimension: examples

Consider X = <, want to learn c:X->{0,1}
What is VC dimension of X

* Open intervals:

H1l: ifz >a then y=1 else y = VC(H1)=1
H2: if x >a then y =1 else y

0
0 VC(H2)=2
or, ifx>atheny=0else y=1

* Closed intervals:
H3: ifa<z<btheny=1celse y=0 VC(H3)=2

H4: ifa<z<btheny=1else y=0 VC(H4)=3
or, i fa<z<btheny=O0elsey=1




VC dimension: examples

What is VC dimension of lines in a plane?
© Hy={((wo+wix; + wyx))>0 > y=1) }

VC dimension: examples

What is VC dimension of

o Hy={((wy+wx,+w,x,)>0 2> y=1)}
— VC(H,)=3

* For H, = linear separating hyperplanes in n dimensions, VC
(H,)-n+1
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For any finite hypothesis space H, can you
give an upper bound on VC(H) in terms of |H| ?
(hint: yes)

More VC Dimension Examples to Think About

» Logistic regression over n continuous features
— Over n boolean features?

* Linear SVM over n continuous features

* Decision trees defined over n boolean features
Fi<X, ..X>>Y

» Decision trees of depth 2 defined over n features

* How about 1-nearest neighbor?
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Tightness of Bounds on Sample Complexity

How many examples m suffice to assure that any hypothesis that fits the
training data perfectly is probably (1-0) approximately (¢) correct?

m > = (41095(2/8) + 8VO(H) 10g2(13/0))

How tight is this bound?

Tightness of Bounds on Sample Complexity

How many examples m suffice to assure that any hypothesis that fits the
training data perfectly is probably (1-8) approximately (g) correct?

m > 2(41095(2/8) + 8VC(H) loga(13/¢))
€
How tight is this bound?

Lower bound on sample complexity (Ehrenfeucht et al., 1989):

Consider any class C of concepts such that VC(C) > 1, any learner L,
any 0 <& < 1/8,and any 0 < 8 <0.01. Then there exists a distribution D
and a target concept in C, such that if L observes fewer examples than
ve(e) -1

1
max |—log(1/6),
; a(1/6) 3¢

Then with probability at least 8, L outputs a hypothesis with errorp(h) > €

12



Agnostic Learning: VC Bounds
[Schélkopf and Smola, 2002]

With probability at least (1-0) every h € H satisfies

VC(H)(In VC(H) +1)+In#

m

errorirye(h) < erroryyqin(h) -|—\J

[ 10 20 30 40 50 60 70 80 90 100
Size of tree (number of nodes)

Structural Risk Minimization Vapnik]

Which hypothesis space should we choose?
+ Bias / variance tradeoff

Ha H3

SRM: choose H to minimize bound on expected true error!

VC(H)(In VC’(H) +1)+1In% 3

m

errorirue(h) < erroryqin(h) -I—\j

* unfortunately a somewhat loose bound...
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PAC Learning: What You Should Know

PAC learning: Probably (1-0) Approximately (error €) Correct
The PAC learning problem setting

Finite H, perfectly consistent learner result
If target function is not in H, agnostic learning
If |H| = « , can use VC dimension to characterize H

Most important:
— Sample complexity grows with complexity of H
— Quantitative characterization of overfitting

Much more: see Prof. Blum’s course on Computational
Learning Theory
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