Machine Learning 10-601

Tom M. Mitchell Machine Learning Department Carnegie Mellon University

October 25, 2011

Today:

- · PAC learning
- VC dimension

Recommended reading:

- Mitchell: Ch. 7
- suggested exercises: 7.1, 7.2, 7.7

PAC Learning Problem Setting

Problem setting:

- Set of instances X
- Set of hypotheses $H=\{h:X \to \{0,1\}\}$
- Set of possible target functions $C = \{c: X \to \{0,1\}\}$
- Sequence of training instances drawn at random from P(X) teacher provides noise-free label c(x)

Learner outputs a hypothesis $h \in H$ such that

$$h = \arg\min_{h \in H} \ error_{train}(h)$$

Overfitting

Consider a hypothesis h and its

- Error rate over training data: $error_{train}(h)$
- True error rate over all data: $error_{true}(h)$

We say h overfits the training data if

$$error_{true}(h) > error_{train}(h)$$

Amount of overfitting =

$$error_{true}(h) - error_{train}(h)$$

What it means

[Haussler, 1988]: probability that the version space is not ϵ -exhausted after m training examples is at most $|H|e^{-\epsilon m}$

$$\frac{\Pr[(\exists h \in H) s.t.(error_{train}(h) = 0) \land (error_{true}(h) > \epsilon)]}{\uparrow} \le |H|e^{-\epsilon m}$$

Suppose we want this probability to be at most δ

1. How many training examples suffice?

$$m \ge \frac{1}{\epsilon}(\ln|H| + \ln(1/\delta))$$

2. If $error_{train}(h) = 0$ then with probability at least (1- δ):

$$error_{true}(h) \le \frac{1}{m}(\ln|H| + \ln(1/\delta))$$

Agnostic Learning

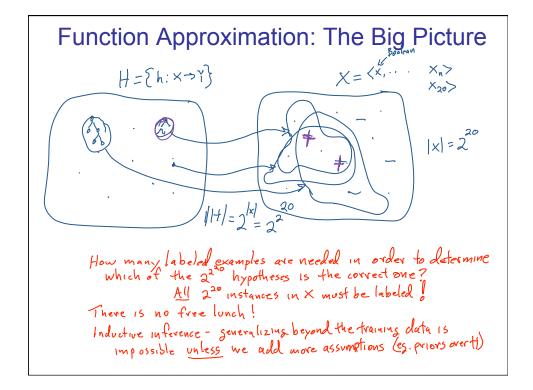
So far, assumed $c \in H$

Agnostic learning setting: don't assume $c \in H$

- What do we want then?
 - The hypothesis h that makes fewest errors on training data
- What is sample complexity in this case?

$$m \geq \frac{1}{2\epsilon^2} (\ln|H| + \ln(1/\delta))$$

Here ε is the difference between the training error and true error of the output hypothesis (the one with lowest training error)



$$m \geq \frac{1}{\epsilon}(\ln|H| + \ln(1/\delta))$$

PAC Learning

Consider a class C of possible target concepts defined over a set of instances X of length n, and a learner L using hypothesis space H.

Definition: C is **PAC-learnable** by L using H if for all $c \in C$, distributions \mathcal{D} over X, ϵ such that $0 < \epsilon < 1/2$, and δ such that $0 < \delta < 1/2$,

learner L will with probability at least $(1 - \delta)$ output a hypothesis $h \in H$ such that $error_{\mathcal{D}}(h) \leq \epsilon$, in time that is polynomial in $1/\epsilon$, $1/\delta$, n and size(c).

PAC Learning

Consider a class C of possible target concepts defined over a set of instances X of length n, and a learner L using hypothesis space H.

Definition: C is **PAC-learnable** by L using H if for all $c \in C$, distributions \mathcal{D} over X, ϵ such that $0 < \epsilon < 1/2$, and δ such that $0 < \delta < 1/2$,

learner L will with probability at least $(1 / \delta)$ output a hypothesis $h \in H$ such that $error_{\mathcal{D}}(h) \leq \epsilon$, in time that is polynomial in $1/\epsilon$, $1/\delta$, n and size(c).

Sufficient condition:
Holds if learner L
requires only a
polynomial number of
training examples, and
processing per
example is polynomial

$$m \geq \frac{1}{\epsilon}(\ln|H| + \ln(1/\delta))$$

Question: If $H = \{h \mid h: X \rightarrow Y\}$ is infinite, what measure of complexity should we use in place of |H|?

$$m \geq \frac{1}{\epsilon}(\ln|H| + \ln(1/\delta))$$

Question: If $H = \{h \mid h: X \rightarrow Y\}$ is infinite, what measure of complexity should we use in place of |H|?

Answer: The largest subset of X for which H can <u>guarantee</u> zero training error (regardless of the target function c)

$$m \geq \frac{1}{\epsilon}(\ln|H| + \ln(1/\delta))$$

Question: If $H = \{h \mid h: X \rightarrow Y\}$ is infinite, what measure of complexity should we use in place of |H|?

Answer: The largest subset of X for which H can <u>guarantee</u> zero training error (regardless of the target function c)

VC dimension of H is the size of this subset

Question: If $H = \{h \mid h: X \rightarrow Y\}$ is infinite, what measure of complexity should we use in place of |H|?

Answer: The largest subset of X for which H can <u>guarantee</u> zero training error (regardless of the target function c)

Informal intuition:

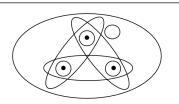
Shattering a Set of Instances

Definition: a dichotomy of a set S is a partition of S into two disjoint subsets.

a labeling of each member of S as positive or negative

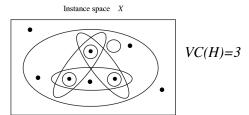
Definition: a set of instances S is **shattered** by hypothesis space H if and only if for every dichotomy of S there exists some hypothesis in H consistent with this dichotomy.

Instance space X



The Vapnik-Chervonenkis Dimension

Definition: The Vapnik-Chervonenkis dimension, VC(H), of hypothesis space H defined over instance space X is the size of the largest finite subset of X shattered by H. If arbitrarily large finite sets of X can be shattered by H, then $VC(H) \equiv \infty$.



Sample Complexity based on VC dimension

How many randomly drawn examples suffice to ϵ -exhaust VS_{H,D} with probability at least (1- δ)?

ie., to guarantee that any hypothesis that perfectly fits the training data is probably $(1-\delta)$ approximately (ϵ) correct

$$m \ge \frac{1}{\epsilon} (4\log_2(2/\delta) + 8VC(H)\log_2(13/\epsilon))$$

Compare to our earlier results based on |H|:

$$m \ge \frac{1}{\epsilon}(\ln(1/\delta) + \ln|H|)$$

VC dimension: examples

Consider X = <, want to learn $c: X \rightarrow \{0,1\}$

What is VC dimension of

· Open intervals:

H1: if
$$x > a$$
 then $y = 1$ else $y = 0$

H2: if
$$x > a$$
 then $y = 1$ else $y = 0$ or, if $x > a$ then $y = 0$ else $y = 1$

Closed intervals:

H3: if
$$a < x < b$$
 then $y = 1$ else $y = 0$

H4: if
$$a < x < b$$
 then $y = 1$ else $y = 0$

or, if a < x < b then y = 0 else y = 1

VC dimension: examples

Consider X = <, want to learn $c:X \rightarrow \{0,1\}$

What is VC dimension of

Open intervals:

H1: if
$$x > a$$
 then $y = 1$ else $y = 0$ VC(H1)=1

H2: if
$$x>a$$
 then $y=1$ else $y=0$ or, if $x>a$ then $y=0$ else $y=1$

Closed intervals:

H3: if
$$a < x < b$$
 then $y = 1$ else $y = 0$ VC(H3)=2

H4: if
$$a < x < b$$
 then $y = 1$ else $y = 0$ VC(H4)=3 or, if $a < x < b$ then $y = 0$ else $y = 1$

VC dimension: examples

What is VC dimension of lines in a plane?

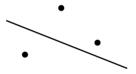
• $H_2 = \{ ((w_0 + w_1x_1 + w_2x_2) > 0 \rightarrow y=1) \}$

•

VC dimension: examples

What is VC dimension of

- $H_2 = \{ ((w_0 + w_1x_1 + w_2x_2) > 0 \rightarrow y=1) \}$ - $VC(H_2)=3$
- For H_n = linear separating hyperplanes in n dimensions, VC (H_n) =n+1



For any finite hypothesis space H, can you give an upper bound on VC(H) in terms of |H|?

(hint: yes)

More VC Dimension Examples to Think About

- Logistic regression over n continuous features
 - Over n boolean features?
- · Linear SVM over n continuous features
- Decision trees defined over n boolean features $F: \langle X_I, \dots X_n \rangle \rightarrow Y$
- · Decision trees of depth 2 defined over n features
- How about 1-nearest neighbor?

Tightness of Bounds on Sample Complexity

How many examples m suffice to assure that any hypothesis that fits the training data perfectly is probably $(1-\delta)$ approximately (ε) correct?

$$m \ge \frac{1}{\epsilon} (4\log_2(2/\delta) + 8VC(H)\log_2(13/\epsilon))$$

How tight is this bound?

Tightness of Bounds on Sample Complexity

How many examples m suffice to assure that any hypothesis that fits the training data perfectly is probably $(1-\delta)$ approximately (ϵ) correct?

$$m \ge \frac{1}{\epsilon} (4\log_2(2/\delta) + 8VC(H)\log_2(13/\epsilon))$$

How tight is this bound?

Lower bound on sample complexity (Ehrenfeucht et al., 1989):

Consider any class C of concepts such that VC(C) > 1, any learner L, any $0 < \epsilon < 1/8$, and any $0 < \delta < 0.01$. Then there exists a distribution \mathcal{D} and a target concept in C, such that if L observes fewer examples than

$$\max\left[\frac{1}{\epsilon}\log(1/\delta), \frac{VC(C)-1}{32\epsilon}\right]$$

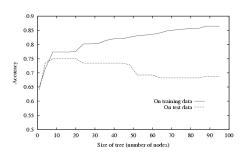
Then with probability at least δ , L outputs a hypothesis with $error_{\mathcal{D}}(h) > \epsilon$

Agnostic Learning: VC Bounds

[Schölkopf and Smola, 2002]

With probability at least $(1-\delta)$ every $h \in H$ satisfies

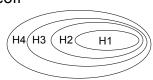
$$error_{true}(h) < error_{train}(h) + \sqrt{\frac{VC(H)(\ln{\frac{2m}{VC(H)}} + 1) + \ln{\frac{4}{\delta}}}{m}}$$



Structural Risk Minimization [Vapnik]

Which hypothesis space should we choose?

· Bias / variance tradeoff



SRM: choose H to minimize bound on expected true error!

$$error_{true}(h) < error_{train}(h) + \sqrt{\frac{VC(H)(\ln{\frac{2m}{VC(H)}} + 1) + \ln{\frac{4}{\delta}}}{m}}$$

* unfortunately a somewhat loose bound...

PAC Learning: What You Should Know

- PAC learning: Probably (1-δ) Approximately (error ε) Correct
- · The PAC learning problem setting
- · Finite H, perfectly consistent learner result
- If target function is not in H, agnostic learning
- If |H| = ∞, can use VC dimension to characterize H
- · Most important:
 - Sample complexity grows with complexity of H
 - Quantitative characterization of overfitting
- Much more: see Prof. Blum's course on Computational Learning Theory