Today:
- Computational Learning Theory
- PAC learning theorem
- VC dimension

Recommended reading:
- Mitchell: Ch. 7
- suggested exercises: 7.1, 7.2, 7.7

Computational Learning Theory

- What general laws constrain inductive learning?
- Want theory to relate
 - Probability of successful learning
 - Number of training examples
 - Complexity of hypothesis space
 - Accuracy to which target function is approximated
 - Manner in which training examples are presented

* See annual Conference on Computational Learning Theory
Sample Complexity

How many training examples suffice to learn target concept

1. If learner proposes instances as queries to teacher?
 - learner proposes x, teacher provides f(x)

2. If teacher (who knows f(x)) proposes training examples?
 - teacher proposes sequence \(\langle x^1, f(x^1) \rangle, \ldots, \langle x^n, f(x^n) \rangle \)

3. If some random process (e.g., nature) proposes instances, and teacher labels them?
 - instances drawn according to \(P(X) \)

Function Approximation: The Big Picture

| \(|H| = 2^{|X|} \) | \(|X| = 2^{|x|} \) |
|-------------------|-------------------|

How many labeled examples are needed in order to determine which of the \(2^{|X|} \) hypotheses is the correct one?

All \(2^{|X|} \) instances in \(X \) must be labeled!

There is no free lunch!

Inductive inference - generalization beyond the training data is impossible unless we add more assumptions (e.g., priors over \(H \)!)
Sample Complexity 3

Problem setting:
- Set of instances X
- Set of hypotheses $H = \{h : X \to \{0, 1\}\}$
- Set of possible target functions $C = \{c : X \to \{0, 1\}\}$
- Sequence of training instances drawn at random from $P(X)$ teacher provides noise-free label $c(x)$

Learner outputs a hypothesis $h \in H$ such that
\[
 h = \arg \min_{h \in H} error_{\text{train}}(h)
\]

True Error of a Hypothesis

The true error of h is the probability that it will misclassify an example drawn at random from $P(X)$
\[
 error_{\text{true}}(h) \equiv \Pr_{x \sim P(X)} [h(x) \neq c(x)]
\]
Two Notions of Error

Training error of hypothesis h with respect to target concept c
- How often $h(x) \neq c(x)$ over training instances D

$$error_{train} \equiv \Pr_{x \in D} [h(x) \neq c(x)] = \frac{1}{|D|} \sum_{x \in D} \delta(h(x) \neq c(x))$$

True error of hypothesis h with respect to c
- How often $h(x) \neq c(x)$ over future instances drawn at random from D

$$error_{true}(h) \equiv \Pr_{x \sim P(X)} [h(x) \neq c(x)]$$

Overfitting

Consider a hypothesis h and its
- Error rate over training data: $error_{train}(h)$
- True error rate over all data: $error_{true}(h)$

We say h overfits the training data if
$$error_{true}(h) > error_{train}(h)$$

Amount of overfitting =
$$error_{true}(h) - error_{train}(h)$$
Overfitting

Consider a hypothesis h and its
- Error rate over training data: $\text{error}_{\text{train}}(h)$
- True error rate over all data: $\text{error}_{\text{true}}(h)$

We say h overfits the training data if

$$\text{error}_{\text{true}}(h) > \text{error}_{\text{train}}(h)$$

Amount of overfitting =

$$\text{error}_{\text{true}}(h) - \text{error}_{\text{train}}(h)$$

Can we bound $\text{error}_{\text{true}}(h)$ in terms of $\text{error}_{\text{train}}(h)$?

$$\text{error}_{\text{train}} \equiv \Pr_{x \in D} [h(x) \neq c(x)] = \frac{1}{|D|} \sum_{x \in D} \delta(h(x) \neq c(x))$$

$$\text{error}_{\text{true}}(h) \equiv \Pr_{x \sim P(X)} [h(x) \neq c(x)]$$

if D was a set of examples drawn from $P(X)$ and independent of h, then we could use standard statistical confidence intervals to determine that with 95% probability $\text{error}_{\text{true}}(h)$ lies in the interval:

$$\text{error}_{D}(h) \pm 1.96 \sqrt{\frac{\text{error}_{D}(h)(1 - \text{error}_{D}(h))}{n}}$$

but D is the training data for h. …
Version Spaces

A hypothesis \(h \) is **consistent** with a set of training examples \(D \) of target concept \(c \) if and only if \(h(x) = c(x) \) for each training example \((x, c(x)) \) in \(D \).

\[
Consistent(h, D) \equiv (\forall (x, c(x)) \in D) \ h(x) = c(x)
\]

The **version space**, \(VS_{H,D} \), with respect to hypothesis space \(H \) and training examples \(D \), is the subset of hypotheses from \(H \) consistent with all training examples in \(D \).

\[
VS_{H,D} \equiv \{ h \in H | Consistent(h, D) \}
\]

Function Approximation: The Big Picture

- **\(|H| = 2^{|X|} \)**
- **\(|X| = 2^{|x|} \)**
- **\(|x| = 2^{|o|} \)**

How many labeled examples are needed in order to determine which of the \(2^{|o|} \) hypotheses is the correct one? **All** \(2^{|o|} \) instances in \(X \) must be labeled.

There is no free lunch!

Inductive inference - generalizing beyond the training data is impossible unless we add more assumptions (e.g., priors over \(H \)).
Exhausting the Version Space

Definition: The version space $V S_{H,D}$ with respect to training data D is said to be ϵ-exhausted if every hypothesis h in $V S_{H,D}$ has true error less than ϵ.

$$(\forall h \in V S_{H,D}) \text{error}_\text{true}(h) < \epsilon$$

How many examples will ϵ-exhaust the VS?

Theorem: [Haussler, 1988].

If the hypothesis space H is finite, and D is a sequence of $m \geq 1$ independent random examples of some target concept c, then for any $0 \leq \epsilon \leq 1$, the probability that the version space with respect to H and D is not ϵ-exhausted (with respect to c) is less than

$$|H|e^{-cm}$$
How many examples will ε-exhaust the VS?

Theorem: [Haussler, 1988].
If the hypothesis space H is finite, and D is a sequence of $m \geq 1$ independent random examples of some target concept c, then for any $0 \leq \varepsilon \leq 1$, the probability that the version space with respect to H and D is not ε-exhausted (with respect to c) is less than $|H|e^{-\varepsilon m}$.

Interesting! This bounds the probability that any consistent learner will output a hypothesis h with $error(h) \geq \varepsilon$.
What it means

[Haussler, 1988]: probability that the version space is not ε-exhausted after m training examples is at most $|H|e^{-\varepsilon m}$

$$\Pr[(\exists h \in H) s.t. (\text{error}_{\text{train}}(h) = 0) \land (\text{error}_{\text{true}}(h) > \varepsilon)] \leq |H|e^{-\varepsilon m}$$

Suppose we want this probability to be at most δ

1. How many training examples suffice?

$$m \geq \frac{1}{\varepsilon}(\ln |H| + \ln(1/\delta))$$

2. If $\text{error}_{\text{train}}(h) = 0$ then with probability at least $(1-\delta)$:

$$\text{error}_{\text{true}}(h) \leq \frac{1}{m}(\ln |H| + \ln(1/\delta))$$

Example: Simple decision trees

Consider Boolean classification problem
• instances: $X = \langle X_1, ..., X_N \rangle$ where each X_i is boolean
• Each hypothesis in H is a decision tree of depth 1

How many training examples m suffice to assure that with probability at least 0.99, any consistent learner using H will output a hypothesis with true error at most 0.05?
Example: H is Conjunction of up to N Boolean Literals

Consider classification problem \(f: X \rightarrow Y \):

- instances: \(X = <X_1, X_2, X_3, X_4> \) where each \(X_i \) is boolean
- Each hypothesis in \(H \) is a rule of the form:
 - IF \(<X_1, X_2, X_3, X_4> = <0,?,1,?> \), THEN \(Y = 1 \), ELSE \(Y = 0 \)
 - i.e., rules constrain any subset of the \(X_i \)

How many training examples \(m \) suffice to assure that with probability at least 0.99, any consistent learner using \(H \) will output a hypothesis with true error at most 0.05?

PAC Learning

Consider a class \(C \) of possible target concepts defined over a set of instances \(X \) of length \(n \), and a learner \(L \) using hypothesis space \(H \).

Definition: \(C \) is **PAC-learnable** by \(L \) using \(H \) if for all \(c \in C \), distributions \(D \) over \(X \), \(\epsilon \) such that \(0 < \epsilon < 1/2 \), and \(\delta \) such that \(0 < \delta < 1/2 \), learner \(L \) will with probability at least \(1 - \delta \) output a hypothesis \(h \in H \) such that \(\text{error}_D(h) \leq \epsilon \), in time that is polynomial in \(1/\epsilon, 1/\delta, n \) and size\((c) \).
PAC Learning

Consider a class C of possible target concepts defined over a set of instances X of length n, and a learner L using hypothesis space H.

Definition: C is **PAC-learnable** by L using H if for all $c \in C$, distributions D over X, ϵ such that $0 < \epsilon < 1/2$, and δ such that $0 < \delta < 1/2$, learner L will with probability at least $(1 - \delta)$ output a hypothesis $h \in H$ such that $err_{\epsilon, \delta}(h) \leq \epsilon$, in time that is polynomial in $1/\epsilon$, $1/\delta$, n and $\text{size}(c)$.

Sufficient condition:
Holds if learner L requires only a polynomial number of training examples, and processing per example is polynomial.

Agnostic Learning

So far, assumed $c \in H$

Agnostic learning setting: don’t assume $c \in H$

- What do we want then?
 - The hypothesis h that makes fewest errors on training data

- What is sample complexity in this case?

$$m \geq \frac{1}{2\epsilon^2} (\ln |H| + \ln(1/\delta))$$

Here ϵ is the difference between the training error and true error of the output hypothesis (the one with lowest training error).
Additive Hoeffding Bounds – Agnostic Learning

• Given \(m \) independent flips of a coin with true \(\Pr(\text{heads}) = \theta \) we can bound the error \(\epsilon \) in the maximum likelihood estimate \(\hat{\theta} \)
 \[
 \Pr[\theta > \hat{\theta} + \epsilon] \leq e^{-2m\epsilon^2}
 \]

• Relevance to agnostic learning: for any single hypothesis \(h \)
 \[
 \Pr[error_{true}(h) > error_{train}(h) + \epsilon] \leq e^{-2m\epsilon^2}
 \]

• But we must consider all hypotheses in \(H \)
 \[
 \Pr[(\exists h \in H) error_{true}(h) > error_{train}(h) + \epsilon] \leq |H|e^{-2m\epsilon^2}
 \]

• So, with probability at least \((1-\delta)\) every \(h \) satisfies
 \[
 error_{true}(h) \leq error_{train}(h) + \sqrt{\frac{\ln |H| + \ln \frac{1}{\delta}}{2m}}
 \]

General Hoeffding Bounds

• When estimating parameter \(\theta \) inside \([a,b]\) from \(m \) examples
 \[
 P(|\hat{\theta} - E[\hat{\theta}]| > \epsilon) \leq 2e^{-\frac{2m\epsilon^2}{(b-a)^2}}
 \]

• When estimating a probability \(\theta \) is inside \([0,1]\), so
 \[
 P(|\hat{\theta} - E[\hat{\theta}]| > \epsilon) \leq 2e^{-2m\epsilon^2}
 \]

• And if we’re interested in only one-sided error, then
 \[
 P((E[\hat{\theta}] - \hat{\theta}) > \epsilon) \leq e^{-2m\epsilon^2}
 \]
Question: If $H = \{h \mid h: X \to Y\}$ is infinite, what measure of complexity should we use in place of $|H|$?

Answer: The largest subset of X for which H can guarantee zero training error (regardless of the target function c).

\[
m \geq \frac{1}{\epsilon} (\ln |H| + \ln(1/\delta))
\]
Question: If $H = \{h \mid h: X \to Y\}$ is infinite, what measure of complexity should we use in place of $|H|$?

Answer: The largest subset of X for which H can guarantee zero training error (regardless of the target function c)

VC dimension of H is the size of this subset
Shattering a Set of Instances

Definition: a dichotomy of a set S is a partition of S into two disjoint subsets.

Definition: a set of instances S is shattered by hypothesis space H if and only if for every dichotomy of S there exists some hypothesis in H consistent with this dichotomy.

Instance space X
The Vapnik-Chervonenkis Dimension

Definition: The Vapnik-Chervonenkis dimension, $VC(H)$, of hypothesis space H defined over instance space X is the size of the largest finite subset of X shattered by H. If arbitrarily large finite sets of X can be shattered by H, then $VC(H) \equiv \infty$.

Sample Complexity based on VC dimension

How many randomly drawn examples suffice to ε-exhaust $VS_{H,D}$ with probability at least $(1-\delta)$?

ie., to guarantee that any hypothesis that perfectly fits the training data is probably $(1-\delta)$ approximately (ε) correct

$$m \geq \frac{1}{\varepsilon} \left(4 \log_2(2/\delta) + 8VC(H) \log_2(13/\varepsilon) \right)$$

Compare to our earlier results based on $|H|$:

$$m \geq \frac{1}{\varepsilon} \left(\ln(1/\delta) + \ln |H| \right)$$
VC dimension: examples

Consider $X = <$, want to learn $c: X \rightarrow \{0, 1\}$

What is VC dimension of

- Open intervals:
 - H_1: if $x > a$ then $y = 1$ else $y = 0$
 - H_2: if $x > a$ then $y = 1$ else $y = 0$
 or, if $x > a$ then $y = 0$ else $y = 1$

- Closed intervals:
 - H_3: if $a < x < b$ then $y = 1$ else $y = 0$
 - H_4: if $a < x < b$ then $y = 1$ else $y = 0$
 or, if $a < x < b$ then $y = 0$ else $y = 1$

VC(H1) = 1
VC(H2) = 2
VC(H3) = 2
VC(H4) = 3
VC dimension: examples

What is VC dimension of lines in a plane?

- $H_2 = \{ ((w_0 + w_1x_1 + w_2x_2)>0 \rightarrow y=1) \}$

VC dimension: examples

What is VC dimension of

- $H_2 = \{ ((w_0 + w_1x_1 + w_2x_2)>0 \rightarrow y=1) \}$
 - VC(H_2)=3
- For H_n = linear separating hyperplanes in n dimensions, VC (H_n)=n+1
For any finite hypothesis space H, can you give an upper bound on $\text{VC}(H)$ in terms of $|H|$? (hint: yes)

More VC Dimension Examples to Think About

- Logistic regression over n continuous features
 - Over n boolean features?

- Linear SVM over n continuous features

- Decision trees defined over n boolean features
 $F: \langle x_1, \ldots, x_n \rangle \rightarrow y$

- Decision trees of depth 2 defined over n features

- How about 1-nearest neighbor?
Tightness of Bounds on Sample Complexity

How many examples \(m \) suffice to assure that any hypothesis that fits the training data perfectly is probably \((1-\delta)\) approximately \((\varepsilon)\) correct?

\[
m \geq \frac{1}{\varepsilon} \left(4 \log_2(2/\delta) + 8VC(H) \log_2(13/\varepsilon) \right)
\]

How tight is this bound?

Lower bound on sample complexity (Ehrenfeucht et al., 1989):

Consider any class \(C \) of concepts such that \(VC(C) > 1 \), any learner \(L \), any \(0 < \varepsilon < 1/8 \), and any \(0 < \delta < 0.01 \). Then there exists a distribution \(D \) and a target concept in \(C \), such that if \(L \) observes fewer examples than

\[
\max \left[\frac{1}{\varepsilon} \log(1/\delta), \frac{VC(C) - 1}{32\varepsilon} \right]
\]

Then with probability at least \(\delta \), \(L \) outputs a hypothesis with \(error_D(h) > \varepsilon \)
Agnostic Learning: VC Bounds

[Schölkopf and Smola, 2002]

With probability at least $(1-\delta)$ every $h \in H$ satisfies

$$\text{error}_{\text{true}}(h) < \text{error}_{\text{train}}(h) + \sqrt{\frac{VC(H)(\ln \frac{2m}{VC(H)} + 1) + \ln \frac{4}{\delta}}{m}}$$

Structural Risk Minimization [Vapnik]

Which hypothesis space should we choose?

- Bias / variance tradeoff

SRM: choose H to minimize bound on expected true error!

$$\text{error}_{\text{true}}(h) < \text{error}_{\text{train}}(h) + \sqrt{\frac{VC(H)(\ln \frac{2m}{VC(H)} + 1) + \ln \frac{4}{\delta}}{m}}$$

* unfortunately a somewhat loose bound...