# Machine Learning 10-701

Tom M. Mitchell
Machine Learning Department
Carnegie Mellon University

September 15, 2011

#### Today:

- The Big Picture
- Overfitting
- Review: probability

#### Readings:

Decision trees, overfiting

Mitchell, Chapter 3

#### Probability review

- Bishop Ch. 1 thru 1.2.3
- Bishop, Ch. 2 thru 2.2
- Andrew Moore's online tutorial

## Function Approximation:

#### **Problem Setting:**

Set of possible instances X

- Unknown target function  $f: X \rightarrow Y$
- Set of function hypotheses  $H = \{ h \mid h : X \rightarrow Y \}$

#### Input:

• Training examples  $\{\langle x^{(i)}, y^{(i)} \rangle\}$  of unknown target function f

#### Output:

• Hypothesis  $h \in H$  that best approximates target function f

## Function Approximation: Decision Tree Learning

#### **Problem Setting:**

- Set of possible instances X
  - each instance x in X is a feature vector  $x = \langle x_1, x_2 \dots x_n \rangle$
- Unknown target function  $f: X \rightarrow Y$ 
  - Y is discrete valued
- Set of function hypotheses  $H = \{ h \mid h : X \rightarrow Y \}$ 
  - each hypothesis h is a decision tree

#### Input:

• Training examples  $\{\langle x^{(i)}, y^{(i)} \rangle\}$  of unknown target function f

#### **Output:**

• Hypothesis  $h \in H$  that best approximates target function f

node = Root

#### Main loop:

- 1.  $A \leftarrow$  the "best" decision attribute for next node
- 2. Assign A as decision attribute for node
- 3. For each value of A, create new descendant of node
- 4. Sort training examples to leaf nodes
- 5. If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes

Which attribute is best?





<u>Information Gain</u> (also called <u>mutual information</u>) between input attribute A and target variable Y

Information Gain is the expected reduction in entropy of target variable Y for data sample S, due to sorting on variable A

$$Gain(S, A) = I_S(A, Y) = H_S(Y) - H_S(Y|A)$$





# Function approximation as Search for the best hypothesis



 ID3 performs heuristic search through space of decision trees

# Function Approximation: The Big Picture

# Function Approximation: The Big Picture



How many labeled examples are needed in order to determine which of the 220 hypotheses is the correct one?

All 200 instances in X must be labeled of

There is no free lunch! Inductive inference - severalizing beyond the training data is impossible unless we add more assumptions (eg. priors overth)

# Which Tree Should We Output?



- ID3 performs heuristic search through space of decision trees
- It stops at smallest acceptable tree. Why?

Occam's razor: prefer the simplest hypothesis that fits the data

## Why Prefer Short Hypotheses? (Occam's Razor)

Arguments in favor:

Arguments opposed:

## Why Prefer Short Hypotheses? (Occam's Razor)

#### Argument in favor:

- Fewer short hypotheses than long ones
- → a short hypothesis that fits the data is less likely to be a statistical coincidence

#### Argument opposed:

- Also fewer hypotheses containing a prime number of nodes and attributes beginning with "Z"
- What's so special about "short" hypotheses, instead of "prime number of nodes"?

#### Overfitting in Decision Trees

Consider adding noisy training example #15:

Sunny, Hot, Normal, Strong, PlayTennis = NoWhat effect on earlier tree?



# Overfitting

Consider a hypothesis h and its

- Error rate over training data:  $error_{train}(h)$
- True error rate over all data:  $error_{true}(h)$

# Overfitting

Consider a hypothesis h and its

- Error rate over training data:  $error_{train}(h)$
- True error rate over all data:  $error_{true}(h)$

We say 
$$h$$
 overfits the training data if  $error_{true}(h) > error_{train}(h)$ 

Amount of overfitting = 
$$error_{true}(h) - error_{train}(h)$$

## Overfitting in Decision Tree Learning



## Avoiding Overfitting

How can we avoid overfitting?

- stop growing when data split not statistically significant
- grow full tree, then post-prune

## Avoiding Overfitting

How can we avoid overfitting?

- stop growing when data split not statistically significant
- grow full tree, then post-prune

How to select "best" tree:

- Measure performance over training data
- Measure performance over separate validation data set
- MDL: minimize size(tree) + size(misclassifications(tree))

## Reduced-Error Pruning

Split data into training and validation set

Create tree that classifies *training* set correctly Do until further pruning is harmful:

- 1. Evaluate impact on *validation* set of pruning each possible node (plus those below it)
- 2. Greedily remove the one that most improves validation set accuracy
- produces smallest version of most accurate subtree
- What if data is limited?

## Effect of Reduced-Error Pruning



## Rule Post-Pruning

- 1. Convert tree to equivalent set of rules
- 2. Prune each rule independently of others
- 3. Sort final rules into desired sequence for use

Perhaps most frequently used method (e.g., C4.5)

### Converting A Tree to Rules



#### Continuous Valued Attributes

Create a discrete attribute to test continuous

- Temperature = 82.5
- (Temperature > 72.3) = t, f

Temperature: 40 48 60 72 80 90 PlayTennis: No No Yes Yes Yes No

# What you should know:

- Well posed function approximation problems:
  - Instance space, X
  - Sample of labeled training data { <x<sup>(i)</sup>, y<sup>(i)</sup>>}
  - Hypothesis space, H = { f: X→Y }
- Learning is a search/optimization problem over H
  - Various objective functions
    - minimize training error (0-1 loss)
    - among hypotheses that minimize training error, select smallest (?)
  - But inductive learning without some bias is futile!
- Decision tree learning
  - Greedy top-down learning of decision trees (ID3, C4.5, ...)
  - Overfitting and tree post-pruning
  - Extensions...

## Extra slides

extensions to decision tree learning

### Attributes with Many Values

#### Problem:

- If attribute has many values, Gain will select it
- Imagine using  $Date = Jun_3_1996$  as attribute

One approach: use GainRatio instead

$$GainRatio(S, A) \equiv \frac{Gain(S, A)}{SplitInformation(S, A)}$$

$$SplitInformation(S, A) \equiv -\sum_{i=1}^{c} \frac{|S_i|}{|S|} \log_2 \frac{|S_i|}{|S|}$$

where  $S_i$  is subset of S for which A has value  $v_i$ 

#### Unknown Attribute Values

What if some examples missing values of A? Use training example anyway, sort through tree

- If node n tests A, assign most common value of A among other examples sorted to node n
- assign most common value of A among other examples with same target value
- assign probability  $p_i$  to each possible value  $v_i$  of A
  - assign fraction  $p_i$  of example to each descendant in tree

Classify new examples in same fashion

# Questions to think about (1)

• ID3 and C4.5 are heuristic algorithms that search through the space of decision trees. Why not just do an exhaustive search?

# Questions to think about (2)

 Consider target function f: <x1,x2> → y, where x1 and x2 are real-valued, y is boolean. What is the set of decision surfaces describable with decision trees that use each attribute at most once?

# Questions to think about (3)

 Why use Information Gain to select attributes in decision trees? What other criteria seem reasonable, and what are the tradeoffs in making this choice?

# Machine Learning 10-701

Tom M. Mitchell
Machine Learning Department
Carnegie Mellon University

September 15, 2011

#### Today:

Review: probability

many of these slides are derived from William Cohen, Andrew Moore, Aarti Singh, Eric Xing. Thanks!

#### Readings:

#### Probability review

- Bishop Ch. 1 thru 1.2.3
- Bishop, Ch. 2 thru 2.2
- Andrew Moore's online tutorial

# **Probability Overview**

- Events
  - discrete random variables, continuous random variables, compound events
- Axioms of probability
  - What defines a reasonable theory of uncertainty
- Independent events
- Conditional probabilities
- Bayes rule and beliefs
- Joint probability distribution
- Expectations
- Independence, Conditional independence

## Random Variables

- Informally, A is a <u>random variable</u> if
  - A denotes something about which we are uncertain
  - perhaps the outcome of a randomized experiment

#### Examples

A = True if a randomly drawn person from our class is female

A = The hometown of a randomly drawn person from our class

A = True if two randomly drawn persons from our class have same birthday

- Define P(A) as "the fraction of possible worlds in which A is true" or "the fraction of times A holds, in repeated runs of the random experiment"
  - the set of possible worlds is called the sample space, S
  - A random variable A is a function defined over S

A: 
$$S \to \{0,1\}$$

## A little formalism

#### More formally, we have

- a <u>sample space</u> S (e.g., set of students in our class)
  - aka the set of possible worlds
- a <u>random variable</u> is a function defined over the sample space
  - Gender:  $S \rightarrow \{ m, f \}$
  - Height: S → Reals
- an <u>event</u> is a subset of S
  - e.g., the subset of S for which Gender=f
  - e.g., the subset of S for which (Gender=m) AND (eyeColor=blue)
- we're often interested in probabilities of specific events
- and of specific events conditioned on other specific events

# Visualizing A



P(A) = Area of reddish oval

# The Axioms of Probability

- 0 <= P(A) <= 1
- P(True) = 1
- P(False) = 0
- P(A or B) = P(A) + P(B) P(A and B)

[di Finetti 1931]:

when gambling based on "uncertainty formalism A" you can be exploited by an opponent

iff

your uncertainty formalism A violates these axioms

### Interpreting the axioms

- 0 <= P(A) <= 1
- P(True) = 1
- P(False) = 0
- P(A or B) = P(A) + P(B) P(A and B)

The area of A can't get any smaller than 0

And a zero area would mean no world could ever have A true

## Interpreting the axioms

- 0 <= P(A) <= 1
- P(True) = 1
- P(False) = 0
- P(A or B) = P(A) + P(B) P(A and B)



The area of A can't get any bigger than 1

And an area of 1 would mean all worlds will have A true

## Interpreting the axioms

- 0 <= P(A) <= 1
- P(True) = 1
- P(False) = 0
- P(A or B) = P(A) + P(B) P(A and B)

### Theorems from the Axioms

- $0 \le P(A) \le 1$ , P(True) = 1, P(False) = 0
- P(A or B) = P(A) + P(B) P(A and B)

$$\rightarrow$$
 P(not A) = P( $\sim$ A) = 1-P(A)

### Theorems from the Axioms

- $0 \le P(A) \le 1$ , P(True) = 1, P(False) = 0
- P(A or B) = P(A) + P(B) P(A and B)

$$\rightarrow$$
 P(not A) = P( $\sim$ A) = 1-P(A)

## Elementary Probability in Pictures

•  $P(\sim A) + P(A) = 1$ 



### Another useful theorem

0 <= P(A) <= 1, P(True) = 1, P(False) = 0,</li>
 P(A or B) = P(A) + P(B) - P(A and B)

$$\rightarrow$$
 P(A) = P(A ^ B) + P(A ^ ~B)

A =  $[A \text{ and } (B \text{ or } \sim B)] = [(A \text{ and } B) \text{ or } (A \text{ and } \sim B)]$   $P(A) = P(A \text{ and } B) + P(A \text{ and } \sim B) - P((A \text{ and } B) \text{ and } (A \text{ and } \sim B))$   $P(A) = P(A \text{ and } B) + P(A \text{ and } \sim B) - P(A \text{ and } B \text{ and } A \text{ and } \sim B)$ 

## Elementary Probability in Pictures

•  $P(A) = P(A ^ B) + P(A ^ B)$ 



## Multivalued Discrete Random Variables

- Suppose A can take on more than 2 values
- A is a <u>random variable with arity k</u> if it can take on exactly one value out of {v<sub>1</sub>, v<sub>2</sub>, ... v<sub>k</sub>}
- Thus...  $P(A = v_i \land A = v_j) = 0 \text{ if } i \neq j$   $P(A = v_1 \lor A = v_2 \lor ... \lor A = v_k) = 1$

## Elementary Probability in Pictures

$$\sum_{j=1}^k P(A=v_j) = 1$$



## Definition of Conditional Probability

## Corollary: The Chain Rule

$$P(A ^ B) = P(A|B) P(B)$$

## Conditional Probability in Pictures

picture: P(B|A=2)



### Independent Events

- Definition: two events A and B are independent if Pr(A and B)=Pr(A)\*Pr(B)
- Intuition: knowing A tells us nothing about the value of B (and vice versa)

## Picture "A independent of B"

### Independent Events



- Definition: two events A and B are independent if P(A ^ B)=P(A)\*P(B)
- Intuition: knowing A tells us nothing about the value of B (and vice versa)



## Elementary Probability in Pictures

Let's write 2 expressions for P(A ^ B)



$$P(A|B) = \frac{P(B|A) * P(A)}{P(B)}$$
 Bayes' rule



we call P(A) the "prior"

and P(A|B) the "posterior"

Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. *Philosophical Transactions of the Royal Society of London*, **53:370-418** 

...by no means merely a curious speculation in the doctrine of chances, but necessary to be solved in order to a sure foundation for all our reasonings concerning past facts, and what is likely to be hereafter.... necessary to be considered by any that would give a clear account of the strength of *analogical* or *inductive reasoning*...

### Other Forms of Bayes Rule

$$P(A | B) = \frac{P(B | A)P(A)}{P(B | A)P(A) + P(B | \sim A)P(\sim A)}$$

$$P(A \mid B \land X) = \frac{P(B \mid A \land X)P(A \land X)}{P(B \land X)}$$

## **Applying Bayes Rule**

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B \mid A)P(A) + P(B \mid \sim A)P(\sim A)}$$

A = you have the flu, B = you just coughed

Assume:

$$P(A) = 0.05$$

$$P(B|A) = 0.80$$

$$P(B| \sim A) = 0.2$$

what is  $P(flu \mid cough) = P(A|B)$ ?

### You should know

- Events
  - discrete random variables, continuous random variables, compound events
- Axioms of probability
  - What defines a reasonable theory of uncertainty
- Independent events
- Conditional probabilities
- Bayes rule and beliefs

# what does all this have to do with function approximation?

## Your first consulting job



- A billionaire from the suburbs of Seattle asks you a question:
  - He says: I have thumbtack, if I flip it, what's the probability it will fall with the nail up?
  - ☐ You say: Please flip it a few times:



- ☐ You say: The probability is:
- ■He says: Why???
- ☐ You say: Because...

### Thumbtack – Binomial Distribution



■ P(Heads) =  $\theta$ , P(Tails) = 1- $\theta$ 

- Flips are i.i.d.:
  - Independent events
  - Identically distributed according to Binomial distribution
- Sequence *D* of  $\alpha_H$  Heads and  $\alpha_T$  Tails

$$P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$

### Maximum Likelihood Estimation



- **Data:** Observed set *D* of  $\alpha_H$  Heads and  $\alpha_T$  Tails
- Hypothesis: Binomial distribution
- Learning θ is an optimization problem
  - □ What's the objective function?
- MLE: Choose θ that maximizes the probability of observed data:

$$\widehat{\theta} = \arg \max_{\theta} P(\mathcal{D} \mid \theta)$$

$$= \arg \max_{\theta} \ln P(\mathcal{D} \mid \theta)$$

### Maximum Likelihood Estimate for Θ



Set derivative to zero:

$$\frac{d}{d\theta} \ln P(\mathcal{D} \mid \theta) = 0$$

Set derivative to zero:

$$rac{d}{d heta} \, \ln P(\mathcal{D} \mid heta) = 0$$

$$\widehat{ heta} = rg \max_{ heta} \ \ln P(\mathcal{D} \mid heta)$$

$$= rg \max_{ heta} \ \ln heta^{lpha_H} (1 - heta)^{lpha_T}$$

## How many flips do I need?



$$\hat{\theta}_{MLE} = \frac{\alpha_H}{\alpha_H + \alpha_T}$$

## Bayesian Learning



Use Bayes rule:

$$P(\theta \mid \mathcal{D}) = \frac{P(\mathcal{D} \mid \theta)P(\theta)}{P(\mathcal{D})}$$

Or equivalently:

$$P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)P(\theta)$$

## Beta prior distribution – $P(\theta)$



- Likelihood function:  $P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 \theta)^{\alpha_T}$
- Posterior:  $P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)P(\theta)$

### Posterior distribution



- Prior:  $Beta(\beta_H, \beta_T)$
- Data:  $\alpha_H$  heads and  $\alpha_T$  tails
- Posterior distribution:

$$P(\theta \mid \mathcal{D}) \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$



## MAP for Beta distribution





$$P(\theta \mid \mathcal{D}) = \frac{\theta^{\beta_H + \alpha_H - 1} (1 - \theta)^{\beta_T + \alpha_T - 1}}{B(\beta_H + \alpha_H, \beta_T + \alpha_T)} \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$

MAP: use most likely parameter:

$$\widehat{\theta} = \arg\max_{\theta} P(\theta \mid \mathcal{D}) =$$

- Beta prior equivalent to extra thumbtack flips
- As  $N \to \infty$ , prior is "forgotten"
- But, for small sample size, prior is important!

### Dirichlet distribution

- number of heads in N flips of a two-sided coin
  - follows a binomial distribution
  - Beta is a good prior (conjugate prior for binomial)
- what it's not two-sided, but k-sided?
  - follows a multinomial distribution
  - Dirichlet distribution is the conjugate prior

$$P( heta_1, heta_2,... heta_K) = rac{1}{B(lpha)} \prod_i^K heta_i^{(lpha_1-1)}$$



Ferdinand Eisenstein Leopold Kronecker Rudolf Lipschitz Carl Wilhelm Borchardt

Dirichlet function Dirichlet eta function

Doctoral students

Known for

### **Estimating Parameters**

• Maximum Likelihood Estimate (MLE): choose  $\theta$  that maximizes probability of observed data  $\mathcal{D}$ 

$$\widehat{\theta} = \arg \max_{\theta} P(\mathcal{D} \mid \theta)$$

 Maximum a Posteriori (MAP) estimate: choose θ that is most probable given prior probability and the data

$$\widehat{\theta} = \arg\max_{\theta} P(\theta \mid \mathcal{D})$$

$$= \arg\max_{\theta} = \frac{P(\mathcal{D} \mid \theta)P(\theta)}{P(\mathcal{D})}$$

### You should know

#### Probability basics

- random variables, events, sample space, conditional probs, ...
- independence of random variables
- Bayes rule
- Joint probability distributions
- calculating probabilities from the joint distribution

#### Point estimation

- maximum likelihood estimates
- maximum a posteriori estimates
- distributions binomial, Beta, Dirichlet, …

### Extra slides

### The Joint Distribution

Example: Boolean variables A, B, C

Recipe for making a joint distribution of M variables:

### The Joint Distribution

Recipe for making a joint distribution of M variables:

 Make a truth table listing all combinations of values of your variables (if there are M Boolean variables then the table will have 2<sup>M</sup> rows). Example: Boolean

| <u>variables A</u> , B, C |   |   |      |
|---------------------------|---|---|------|
| A                         | В | C | , –, |
| 0                         | 0 | 0 |      |
| 0                         | 0 | 1 |      |
| 0                         | 1 | 0 |      |
| 0                         | 1 | 1 |      |
| 1                         | 0 | 0 |      |
| 1                         | 0 | 1 |      |
| 1                         | 1 | 0 |      |
| 1                         | 1 | 1 |      |

#### The Joint Distribution

Recipe for making a joint distribution of M variables:

- Make a truth table listing all combinations of values of your variables (if there are M Boolean variables then the table will have 2<sup>M</sup> rows).
- 2. For each combination of values, say how probable it is.

Example: Boolean

| varia | ables A                    | ARC                                                                                                                   |
|-------|----------------------------|-----------------------------------------------------------------------------------------------------------------------|
| В     | C                          | Prob                                                                                                                  |
| 0     | 0                          | 0.30                                                                                                                  |
| 0     | 1                          | 0.05                                                                                                                  |
| 1     | 0                          | 0.10                                                                                                                  |
| 1     | 1                          | 0.05                                                                                                                  |
| 0     | 0                          | 0.05                                                                                                                  |
| 0     | 1                          | 0.10                                                                                                                  |
| 1     | 0                          | 0.25                                                                                                                  |
| 1     | 1                          | 0.10                                                                                                                  |
|       | 0<br>0<br>1<br>1<br>0<br>0 | 0       0         0       1         1       0         1       1         0       0         0       1         1       0 |

#### The Joint Distribution

Recipe for making a joint distribution of M variables:

- Make a truth table listing all combinations of values of your variables (if there are M Boolean variables then the table will have 2<sup>M</sup> rows).
- 2. For each combination of values, say how probable it is.
- 3. If you subscribe to the axioms of probability, those numbers must sum to 1.

Example: Boolean

| variables A. R. C. |   |   |      |  |
|--------------------|---|---|------|--|
| A                  | В | C | Prob |  |
| 0                  | 0 | 0 | 0.30 |  |
| 0                  | 0 | 1 | 0.05 |  |
| 0                  | 1 | 0 | 0.10 |  |
| 0                  | 1 | 1 | 0.05 |  |
| 1                  | 0 | 0 | 0.05 |  |
| 1                  | 0 | 1 | 0.10 |  |
| 1                  | 1 | 0 | 0.25 |  |
| 1                  | 1 | 1 | 0.10 |  |



# Using the Joint



One you have the JD you can ask for the probability of any logical expression involving your attribute

$$P(E) = \sum_{\text{rows matching } E} P(\text{row})$$

# Using the Joint



P(Poor Male) = 0.4654 
$$P(E) = \sum_{\text{rows matching } E} P(\text{row})$$

# Using the Joint



$$P(Poor) = 0.7604$$

$$P(E) = \sum_{\text{rows matching } E} P(\text{row})$$

# Inference with the Joint

| gender | hours_worked | wealth |           |
|--------|--------------|--------|-----------|
| Female | v0:40.5-     | poor   | 0.253122  |
|        |              | rich   | 0.0245895 |
|        | v1:40.5+     | poor   | 0.0421768 |
|        |              | rich   | 0.0116293 |
| Male   | v0:40.5-     | poor   | 0.331313  |
|        |              | rich   | 0.0971295 |
|        | v1:40.5+     | poor   | 0.134106  |
|        |              | rich   | 0.105933  |

$$P(E_1 | E_2) = \frac{P(E_1 \land E_2)}{P(E_2)} = \frac{\sum_{\text{rows matching } E_1 \text{ and } E_2}}{\sum_{\text{rows matching } E_2}} P(\text{row})$$

# Inference with the Joint



$$P(E_1 | E_2) = \frac{P(E_1 \land E_2)}{P(E_2)} = \frac{\sum_{\text{rows matching } E_1 \text{ and } E_2}}{\sum_{\text{rows matching } E_2}} P(\text{row})$$

 $P(Male \mid Poor) = 0.4654 / 0.7604 = 0.612$ 

#### Expected values

Given discrete random variable X, the expected value of X, written E[X] is

$$E[X] = \sum_{x \in \mathcal{X}} x P(X = x)$$

We also can talk about the expected value of functions of X

$$E[f(X)] = \sum_{x \in \mathcal{X}} f(x)P(X = x)$$

#### Covariance

Given two discrete r.v.'s X and Y, we define the covariance of X and Y as

$$Cov(X,Y) = E[(X - E(X))(Y - E(Y))]$$

e.g., X=gender, Y=playsFootball or X=gender, Y=leftHanded

Rememb 
$$E[X] = \sum_{x \in \mathcal{X}} x P(X = x)$$

## Your first consulting job (PCYIX)

- A billionaire from the suburbs of Seattle asks you a question:
  - He says: I have thumbtack, if I flip it, what's the probability it will fall with the nail up?
  - ☐ You say: Please flip it a few times:



- ■He says: Why???
- ☐ You say: Because...

#### Thumbtack – Binomial Distribution



- □ Independent events
- Identically distributed according to Binomial distribution
- Sequence *D* of  $\alpha_H$  Heads and  $\alpha_T$  Tails

data 
$$P(\mathcal{D} \mid \theta) = \theta^{lpha_H} (1- heta)^{lpha_T}$$

#### Maximum Likelihood Estimation



- **Data:** Observed set *D* of  $\alpha_H$  Heads and  $\alpha_T$  Tails
- Hypothesis: Binomial distribution
- Learning θ is an optimization problem
  - □ What's the objective function?
- MLE: Choose θ that maximizes the probability of observed data:

$$\widehat{\theta} = \arg \max_{\theta} P(\mathcal{D} \mid \theta)$$

$$= \arg \max_{\theta} \ln P(\mathcal{D} \mid \theta)$$

#### Maximum Likelihood Estimate for Θ



$$\widehat{ heta} = rg \max_{ heta} \ \ln P(\mathcal{D} \mid heta)$$

$$= rg \max_{ heta} \ \ln heta^{lpha_H} (1 - heta)^{lpha_T}$$

Set derivative to zero:

$$rac{d}{d heta}$$
 In  $P(\mathcal{D} \mid heta) = 0$ 

340

Set derivative to zero:

$$rac{d}{d heta} \, \ln P(\mathcal{D} \mid heta) = 0$$

$$\widehat{\theta} = \arg\max_{\theta} \ln P(\mathcal{D} \mid \theta)$$

$$= \arg\max_{\theta} \ln \theta^{\alpha_H} (1-\theta)^{\alpha_T} = \int_{-\infty}^{\infty} \mathcal{A}^{\mathsf{H}} \ln \theta + \mathcal{A}^{\mathsf{T}} \ln (1-\theta)$$

$$\frac{1}{20} = \frac{1}{0}$$

$$\frac{1}{20} = \frac{1}{0}$$

$$\frac{1}{20} = \frac{1}{0}$$

$$\frac{1}{0} = \frac{1}{0}$$

$$\frac{1}{0} = \frac{1}{0}$$

$$\frac{1}{0} = \frac{1}{0}$$

$$\frac{1}{0} = \frac{1}{0}$$

$$\partial = \frac{1}{\alpha_{H}}$$

#### How many flips do I need?



### Bayesian Learning





arsmar 
$$P(\theta \mid \mathcal{D}) = \frac{P(\mathcal{D} \mid \theta)P(\theta)}{P(\mathcal{D})}$$

Or equivalently:

$$P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta) P(\theta)$$

### Beta prior distribution – $P(\theta)$

$$P(\theta) = \frac{\theta^{\beta_H - 1}(1-\theta)^{\beta_T - 1}}{B(\beta_H, \beta_T)} \sim Beta(\beta_H, \beta_T) \qquad \text{Mean:}$$

$$Beta(3,2) \qquad \qquad Beta(3,2) \qquad \qquad Beta$$

- Likelihood function:  $P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 \theta)^{\alpha_T}$
- Posterior:  $P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)P(\theta)$

#### Posterior distribution



- Prior:  $Beta(\beta_H, \beta_T)$
- Data:  $\alpha_H$  heads and  $\alpha_T$  tails
- Posterior distribution:

$$P(\theta \mid \mathcal{D}) \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$



## MAP for Beta distribution





$$P(\theta \mid \mathcal{D}) = \frac{\theta^{\beta_H + \alpha_H - 1} (1 - \theta)^{\beta_T + \alpha_T - 1}}{B(\beta_H + \alpha_H, \beta_T + \alpha_T)} \sim Beta(\beta_H + \alpha_H, \beta_T + \alpha_T)$$

MAP: use most likely parameter:

$$\widehat{\theta} = \arg\max_{\theta} P(\theta \mid \mathcal{D}) = \underbrace{\begin{array}{c} \mathcal{A}_{\mathcal{H}} + \mathcal{B}_{\mathcal{H}} \\ \mathcal{A}_{\mathcal{H}} + \mathcal{A}_{\mathcal{T}} + \mathcal{B}_{\mathcal{H}} + \mathcal{B}_{\mathcal{T}} \end{array}}_{\mathcal{A}_{\mathcal{H}} + \mathcal{A}_{\mathcal{T}}}$$

- Beta prior equivalent to extra thumbtack flips
- As  $N \to \infty$ , prior is "forgotten"
- But, for small sample size, prior is important!

#### Dirichlet distribution

- number of heads in N flips of a two-sided coin
  - follows a binomial distribution
  - Beta is a good prior (conjugate prior for binomial)
- what it's not two-sided, but k-sided?
  - follows a multinomial distribution
  - Dirichlet distribution is the conjugate prior

$$P( heta_1, heta_2,... heta_K) = rac{1}{B(lpha)} \prod_i^K heta_i^{(lpha_1-1)}$$



Ferdinand Eisenstein Leopold Kronecker Rudolf Lipschitz Carl Wilhelm Borchardt

Dirichlet function Dirichlet eta function

Doctoral students

Known for

#### **Estimating Parameters**

• Maximum Likelihood Estimate (MLE): choose  $\theta$  that maximizes probability of observed data  $\mathcal{D}$ 

$$\widehat{\theta} = \arg \max_{\theta} P(\mathcal{D} \mid \theta)$$

 Maximum a Posteriori (MAP) estimate: choose θ that is most probable given prior probability and the data

$$\widehat{\theta} = \arg\max_{\theta} P(\theta \mid \mathcal{D})$$

$$= \arg\max_{\theta} = \frac{P(\mathcal{D} \mid \theta)P(\theta)}{P(\mathcal{D})}$$

#### You should know

#### Probability basics

- random variables, events, sample space, conditional probs, ...
- independence of random variables
- Bayes rule
- Joint probability distributions
- calculating probabilities from the joint distribution

#### Point estimation

- maximum likelihood estimates
- maximum a posteriori estimates
- distributions binomial, Beta, Dirichlet, …





- Data:
  - We observed Niid coin tossing: D={1, 0, 1, ..., 0}
- Representation:



$$x_n = \{0,1\}$$

$$P(x) = \begin{cases} 1 - \theta & \text{for } x = 0 \\ \theta & \text{for } x = 1 \end{cases} \Rightarrow P(x) = \theta^{x} (1 - \theta)^{1 - x}$$

• How to write the likelihood of a single observation  $x_i$ ?

$$P(x_i) = \theta^{x_i} (1 - \theta)^{1 - x_i}$$

The likelihood of dataset D={x<sub>1</sub>, ...,x<sub>N</sub>}:

$$P(x_{1}, x_{2}, ..., x_{N} \mid \theta) = \prod_{i=1}^{N} P(x_{i} \mid \theta) = \prod_{i=1}^{N} \left(\theta^{x_{i}} (1 - \theta)^{1 - x_{i}}\right) = \theta^{\sum_{i=1}^{N} x_{i}} (1 - \theta)^{\sum_{i=1}^{N} 1 - x_{i}} = \theta^{\text{\#head}} (1 - \theta)^{\text{\#tails}}$$