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Today: Readings:
« The Big Picture Decision trees, overfiting
« Qverfitting * Mitchell, Chapter 3

* Review: probability
Probability review
« Bishop Ch. 1 thru 1.2.3
« Bishop, Ch. 2 thru 2.2

* Andrew Moore’ s online
tutorial



Function Approximation:

Problem Setting:

« Set of possible instances X

« Unknown target function f: XY

« Set of function hypotheses H={ h | h: X>Y }

Input:

* Training examples {<x(" y(’>} of unknown target function f
Output:

* Hypothesis h € H that best approximates target function f



Function Approximation: Decision Tree Learning

Problem Setting:
« Set of possible instances X
— each instance x in X is a feature vector
X=<X;,Xy..X>
* Unknown target function f: XY
— Yis discrete valued
« Set of function hypotheses H={h | h : X>Y }

— each hypothesis / is a decision tree

Input:

« Training examples {<x(?,y(V>} of unknown target function f
Output:

« Hypothesis h € H that best approximates target function f



Top-Down Induction of Decision Trees
[ID3, C4.5, Quinlan]

node = Root

Main loop:

1. A < the “best” decision attribute for next node
2. Assign A as decision attribute for node

3. For each value of A, create new descendant of
node

4. Sort training examples to leaf nodes

5. If training examples perfectly classified, Then
STOP, Else iterate over new leaf nodes

Which attribute is best?

[29+, 35-] Al1="7 [29+, 35-] A2="7

t f t f

[21+,5-] [8+,30-] [18+,33-] [11+, 2-]



Information Gain (also called mutual information)
between input attribute A and target variable Y

Information Gain is the expected reduction in entropy
of target variable Y for data sample S, due to sorting

on variable A

Gain(S, A) = I5(A,Y) = Hs(Y) — Hg(Y |A)

[29+, 35-] Al1="7 [29+4,35-]

t t

[21+,5-] [8+,30—] [18+,33-] [11+,2-]



Function approximation as Search
for the best hypothesis

* |D3 performs heuristic
E‘(D\ search through space of

S \ decision trees



Function Approximation: The Big Picture






Function Approximation: The Big Picture
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Which Tree Should We Output?

* |D3 performs heuristic

J search through space of
}{'{ decision trees
e . ‘ \ |t stops at smallest
E\F\% /{?\ acceptable tree. Why?
= a2 Occam'’ s razor: prefer the
N R simplest hypothesis that
+ ] fits the data



Why Prefer Short Hypotheses? (Occam’ s Razor)

Arguments in favor:

Arguments opposed:



Why Prefer Short Hypotheses? (Occam’ s Razor)

Argument in favor:
* Fewer short hypotheses than long ones

—> a short hypothesis that fits the data is less likely to be
a statistical coincidence

Argument opposed:

« Also fewer hypotheses containing a prime number of
nodes and attributes beginning with “Z”

« What' s so special about “short” hypotheses, instead
of “prime number of nodes™?



Overfitting in Decision Trees

Consider adding noisy training example #15:

Sunny, Hot, Normal, Strong, PlayTennis = No

What effect on earlier tree?

Outlook
Sunny Overcast Rain
Humidity Yes Wind
High Normal Strong Weak

/ \ / \

No Yes No Yes



Overfitting

Consider a hypothesis / and its
« Error rate over training data: erroriyqin(h)
» True error rate over all data: erroriyye(h)



Overfitting

Consider a hypothesis / and its
« Error rate over training data: erroriyqin(h)
» True error rate over all data: erroriyye(h)

We say / overfits the training data if

errorimye(h) > erroryrqin(h)

Amount of overfitting =
errorire(h) — erroriqin(h)



Overfitting in Decision Tree Learning
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Avoiding Overfitting

How can we avoid overfitting?

e stop growing when data split not statistically
significant

e grow full tree, then post-prune



Avoiding Overfitting

How can we avoid overfitting?

e stop growing when data split not statistically
significant

e grow full tree, then post-prune

How to select “best” tree:
e Measure performance over training data

e Measure performance over separate validation
data set

e MDL: minimize
size(tree) + size(misclassifications(tree))



Reduced-Error Pruning

Split data into training and validation set

Create tree that classifies fraining set correctly
Do until further pruning is harmful:

1. Evaluate impact on validation set of pruning
each possible node (plus those below it)

2. Greedily remove the one that most improves
validation set accuracy

e produces smallest version of most accurate
subtree

e What if data is limited?



Effect of Reduced-Error Pruning
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Rule Post-Pruning

1. Convert tree to equivalent set of rules
2. Prune each rule independently of others

3. Sort final rules into desired sequence for use

Perhaps most frequently used method (e.g., C4.5)



Converting A Tree to Rules

Outlook
Sunny Overcast Rain
Humidity Yes Wind
High Normal Strong Weak

/ \ / \

No Yes No Yes



Continuous Valued Attributes

Create a discrete attribute to test continuous
e I'emperature = 82.5

o (Temperature > 72.3) =t, f

Temperature: 40 48 60 72 80 90
PlayTennis: No No Yes Yes Yes No




What you should know:

« Well posed function approximation problems:
— Instance space, X
— Sample of labeled training data { <x, y(>}
— Hypothesis space, H={f: X2>Y}

« Learning is a search/optimization problem over H
— Various objective functions
* minimize training error (0-1 loss)
« among hypotheses that minimize training error, select smallest (?)

— But inductive learning without some bias is futile !

« Decision tree learning
— Greedy top-down learning of decision trees (ID3, C4.5, ...)
— QOverfitting and tree post-pruning
— Extensions...



Extra slides

extensions to decision tree learning



Attributes with Many Values

Problem:
e If attribute has many values, Gain will select it

e Imagine using Date = Jun_3 1996 as attribute

One approach: use GainRatio instead
Gain(S, A)
SplitInformation(S, A)

GainRatio(S, A) =

SplitIn formation(S, A) =

where S; is subset of S for which A has value v,



Unknown Attribute Values

What if some examples missing values of A7
Use training example anyway, sort through tree

e If node n tests A, assign most common value of
A among other examples sorted to node n

e assign most common value of A among other
examples with same target value

e assign probability p; to each possible value v; of
A

— assign fraction p; of example to each
descendant in tree

Classify new examples in same fashion



Questions to think about (1)

* |D3 and C4.5 are heuristic algorithms that
search through the space of decision trees.
Why not just do an exhaustive search?



Questions to think about (2)

« Consider target function f: <x1,x2> -2 v,
where x1 and x2 are real-valued, vy is
boolean. What is the set of decision surfaces
describable with decision trees that use each
attribute at most once?



Questions to think about (3)

* Why use Information Gain to select attributes
In decision trees? \What other criteria seem
reasonable, and what are the tradeoffs in
making this choice?
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Probability Overview

 Events

— discrete random variables, continuous random variables,
compound events

« Axioms of probability
— What defines a reasonable theory of uncertainty

* Independent events

« Conditional probabilities

« Bayes rule and beliefs

« Joint probability distribution

« EXxpectations

* Independence, Conditional independence



Random Variables

Informally, A is a random variable if
— A denotes something about which we are uncertain
— perhaps the outcome of a randomized experiment

Examples
A = True if a randomly drawn person from our class is female
A = The hometown of a randomly drawn person from our class
A = True if two randomly drawn persons from our class have same birthday

Define P(A) as “the fraction of possible worlds in which A is true” or
“the fraction of times A holds, in repeated runs of the random experiment”

— the set of possible worlds is called the sample space, S
— A random variable A is a function defined over S

A:S > {0,1)



A little formalism

More formally, we have

a sample space S (e.g., set of students in our class)
— aka the set of possible worlds

a random variable is a function defined over the sample
space

— Gender: S > {m, f}

— Height: S > Reals

an event is a subset of S
— e.g., the subset of S for which Gender=f
— e.g., the subset of S for which (Gender=m) AND (eyeColor=blue)

we’ re often interested in probabilities of specific events
and of specific events conditioned on other specific events




Visualizing A

Sample space
of all possible

worlds ——_

/
Its area is 1

Worlds in which

Ais true

Worlds in which A is False

P(A) = Area of
reddish oval



The Axioms of Probability

0<=PA) <=1

P(True) = 1

P(False) =0
P(AorB)=P(A)+PB)-P(AandB)

[di Finetti 1931]:

when gambling based on “uncertainty formalism A” you can
be exploited by an opponent

Iff

your uncertainty formalism A violates these axioms



Interpreting the axioms

.+ 0<=P(A) <=1

P(True) = 1
P(False) =0
P(A or B) =P(A) + P(B) - P(A and B)

The area of Acan’ t
get any smaller than O

And a zero area
would mean no

world could ever
have A true



Interpreting the axioms

. 0<=P(A) <=1

P(True) =1
P(False) =0
P(A or B) =P(A) + P(B) - P(A and B)

The area of Acan’ t
get any bigger than 1

And an area of 1
would mean all
worlds will have A
true




Interpreting the axioms

« 0<=PA)<=1

 P(True)=1

« P(False)=0

« P(AorB)=P(A)+P(B)-P(Aand B)



Theorems from the Axioms

. 0<=P(A) <=1, P(True) = 1, P(False) = 0
. P(Aor B) = P(A) + P(B) - P(A and B)

> P(not A) = P(~A) = 1-P(A)



Theorems from the Axioms

. 0<=P(A) <=1, P(True) = 1, P(False) = 0
. P(Aor B) = P(A) + P(B) - P(A and B)

> P(not A) = P(~A) = 1-P(A)

P(Aor~A)=1 P(Aand ~A) =0
P(Aor~A)=P(A) + P(~A) - P(Aand ~A)

1 =P(A)+ P(~A) + 0




Elementary Probability in

Pictures
e P(~A) + P(A) = 1

O -




Another useful theorem

. 0<=P(A) <=1, P(True) = 1, P(False) = 0,
P(A or B) = P(A) + P(B) - P(A and B)

> P(A) = P(A A B) + P(A A ~B)
A= [Aand (B or ~B)] = [(Aand B) or (Aand ~B)]

P(A) =P(Aand B) + P(Aand ~B) — P((A and B) and (A and ~B))
P(A)=P(Aand B) + P(Aand ~B) — P(Aand B and A and -B)



Elementary Probabillity in Pictures
+ P(A) =P(A~B)+P(A*~B)




Multivalued Discrete Random
Variables

« Suppose A can take on more than 2 values

A is arandom variable with arity k if it can take on
exactly one value out of {v,,v,, ... v/}

e Thus...

P(A=v,nA=v,)=01ti=j
P(A=v,vVA=v,v..VA=v )=1



Elementary Probability in

Pictures

iP(A =V,)=

1

A=1

A=2




Definition of Conditional
Probability

Corollary: The Chain Rule
P(A* B) = P(A|B) P(B)



Conditional Probability in Pictures

picture: P(B|A=2)

A=2

A=5

A=4




Independent Events
 Definition: two events A and B are
iIndependent if Pr(A and B)=Pr(A)*Pr(B)

* Intuition: knowing A tells us nothing
about the value of B (and vice versa)



Picture “Aindependent of B”

_ TLAND) .
Independent Events  7(*"” - f?—;j

* Definition: two events A and B are
independent if | P(A " B)= *P(B

* [ntuition: knowing A tells us nothing
about the value of B (and vice versa)




Elementary Probability in

Pictures
» Let's write 2 expressions for P(A * B)




P(BIA) * P(A) ,
P(AIB) = 5 (B) Bayes rule

we call P(A) the “prior”
Bayes, Thomas (1763) An essay
towards solving a problem in the doctrine

and P(AlB) the “posterior” of chances. Philosophical Transactions of
the Royal Society of London, 53:370-418

...by no means merely a curious speculation in the doctrine of chances,
but necessary to be solved in order to a sure foundation for all our
reasonings concerning past facts, and what is likely to be hereafter....
necessary to be considered by any that would give a clear account of the
strength of analogical or inductive reasoning...



Other Forms of Bayes Rule

P(B| A)P(A)

F41B) - P(B| A)P(A)+ P(B |~ A)P(~ A)

P(B|ANX)P(AAKX)
P(B A X)

P(ABAX)=



Applying Bayes Rule

P(B1 A)P(A)
P(BIA)P(A) + P(B |~ A)P(~ A)

P(AB) =

A = you have the flu, B = you just coughed

Assume:
P(A)=0.05
P(B|A) = 0.80
P(B| ~A) = 0.2

what is P(flu | cough) = P(A|B)?



You should know

Events

— discrete random variables, continuous random variables,
compound events

Axioms of probability

— What defines a reasonable theory of uncertainty
* Independent events

« Conditional probabilities

Bayes rule and beliefs



what does all this have to do with
function approximation?



Your first consulting job

" A
m A billionaire from the suburbs of Seattle asks
you a question:

He says: | have thumbtack, if | flip it, what's the
probability it will fall with the nail up?

You say: Please flip it a few times:

N LN L b

You say: The probability is:
He says: Why???

You say: Because...



Thumbtack — Binomial Distribution
= BN
m P(Heads) = 6, P(Tails)=1-6
¥ \L VNN
LKL % X, K.
m Flips are i.i.d.:

Independent events

Identically distributed according to Binomial
distribution

m Sequence D of o, Heads and a5 Tails

P(D | ) = 0°H (1 — )T



Maximum Likelihood Estimation
" J

m Data: Observed set D of oy Heads and o Tails

m Hypothesis: Binomial distribution

m Learning 0 is an optimization problem
What's the objective function?

m MLE: Choose 0 that maximizes the probability of
observed data:

) = arg mgax P(D|0)

= arg m@ax In P(D | 6)



Maximum Likelihood Estimate for ©

" _
0 = argmgnx nP(D|0)

= arg mgax nNO“H (1 —0)T

m Set derivative to zero: | ¢ | P(D|0) =0




0

arg m@ax

arg max
7,

m Set derivative to zero:

In P(D | 6)
INnOYH (1 — 6)T

%InP(DH)):O




How many flips do | need?




Bayesian Learning

" A
m Use Bayes rule:
P(D|0)P(60)

PO |D) = D)

m Or equivalently:

PO |D) x P(D|6)P(0)



Be|ta prior distribution — P(0)
"
058 H— 1(1 9)137“ 1 Mean:

~ Beta(Bg, 3
B(BH BT) ( H s T) Mode:

Bata{1,1)
08
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@
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0 _
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m Likelihood function: P(D|0) = 6%%(1 —0)*T
m Posterior: P(0 | D) o« P(D|0)P(0)

P(0) =




Posterior distribution
"
~ m Prior: Beta(B8y. 37)
m Data: ay heads and a tails

m Posterior distribution:

P(0 | D) ~ Beta(By + oy, Br + ar)

Beta{1,1) 18 Beta2,2) Beta(3,2) o Bata(30,20)
14
15 5
08 12
- 4
2 o8 2 2 2
a g o8 3 23
[ < < ES
D aa @ o6 @ = 2
04 05
02 ’
02
0 _ 0 _ 0 _ 0 - —
0 0.2 04 06 08 1 0 0.2 04 06 08 1 0 0.2 04 08 08 1 0 0.2 04 08 08 1
paramelnr valos paramelnr valos paramelnr valos paramelnr valos




Beta(30,20)

MAP for Beta distribution

[ _ i’

9,311'+a11—1(1 _ 9),'31w+a-1v—1
BBy + am, Br + ar)

ameter value

~ Beta(By+o, Br+or)

P(0 | D) =

m MAP: use most likely parameter:

f = arg max PO | D) =

m Beta prior equivalent to extra thumbtack flips
m As N — oo, prior is “forgotten”
m But, for small sample size, prior is important!



Lejeune Dirichlet

Dirichlet distribution

 number of heads in N flips of a two-sided coin
— follows a binomial distribution
— Beta is a good prior (conjugate prior for binomial)

Johann Peter Gustav Lejeune Dirichlet

. . . Born ebrual
 what it’ s not two-sided, but k-sided? Diran,Fsr Env
Died 5 May 1858 (aged 54)
— follows a multinomial distribution N e
— Dirichlet distribution is the conjugate prior ey P o
Institutions Un:rvers:rty of Berlin
K Uniersty of Gotingen
Alma mater University of Bonn
P 0 9 9 . ]- 9 (Q 1— 1) Doctoral advisor Simeon [;yoisgon
( 1’ 2, e K) T B Z' Doctoral students :Z:::Z:: UE:;ccfnstcin
(a) . Leopold Kronecker

(A Rudolf Lipschitz
Carl Wilhelm Borchargt

Known for Dirichlet function
Dirichlet eta function



Estimating Parameters

« Maximum Likelihood Estimate (MLE): choose
0 that maximizes probability of observed data D

AN

0 = arg m@ax P(D|0)

 Maximum a Posteriori (MAP) estimate:
choose 0 that is most probable given prior
probability and the data

0 = argmax P(0|D)

0
= arg m@ax = P(Dp‘(z;f(e)




You should know

* Probability basics
— random variables, events, sample space, conditional probs, ...
— independence of random variables
— Bayes rule
— Joint probability distributions
— calculating probabilities from the joint distribution

* Point estimation
— maximum likelihood estimates
— maximum a posteriori estimates
— distributions — binomial, Beta, Dirichlet, ...



Extra slides



The Joint Distribution

Recipe for making a joint
distribution of M variables:



The Joint Distribution

Recipe for making a joint

distribution of M variables:

1. Make a truth table listing all

combinations of values of

your variables (if there are

M Boolean variables then

= ||, |, |O|lO|OC| O

= || O|lO|~=|HH]|O|O

= 1 Ol =R |O|lFRr|O| | O

the table will have 2Mrows).




The Joint Distribution

Recipe for making a joint

0.30

distribution of M variables:

0.05

0.10

1. Make a truth table listing all

0.05

combinations of values of

0.05

0.10

your variables (if there are

0.25

M Boolean variables then

= ||, |, |O|lO|OC| O

= || O|lO|~=|HH]|O|O

= 1 Ol =R |O|lFRr|O| | O

0.10

the table will have 2Mrows).

2. For each combination of
values, say how probable it
IS.




The Joint Distribution

Recipe for making a joint
distribution of M variables:

0.30
0.05
0.10
0.05
0.05
0.10
0.25
0.10

1. Make a truth table listing all
combinations of values of
your variables (if there are
M Boolean variables then

= ||, |, |O|lO|OC| O
= || O|lO|~=|HH]|O|O
= | Ol =R | Ol =R ]|O| =] O

the table will have 2Mrows).
2. For each combination of
values, say how probable it
iS.
3. If you subscribe to the
axioms of probability, those
numbers must sum to 1.




0.253122 |

0.0245895 |}
0.0421768 ||}
0.0116293 ||

0331313 I
0.0971295 |

0.134106 |EGN

0.105933 |EGEGN

gender hours_worked wealth
s Female v0:40.5- poor
USI ng the rich
. v1:40.5+ poor
Joint
Male v0:40.5- poor
rich
v1:40.5+ poor
rich
One you have the JD P(E) =

you can ask for the

E P(row)

rows matching £

probability of any logical

expression involving
your attribute




gender hours_worked wealth

. Female v0:40.5- poor 0.253122 NG
USlng the rich  0.0245895 |}

- v1:40.5+ poor 0.0421768 |}
Joint

rich  0.0116293 |

ale  v0:40.5- oor 0.331313 NG
rich  0.0971295 |

v1:40.5+ poor  0.134106 NN
rich  0.105933 |

P(Poor Male) = 0.4654 P(E)= ) P(row)

rows matching £



Using the
Joint

P(Poor) = 0.7604

gender hours_worked wealth

[Female v0:405-  poor 0253122 NN
rich  0.0245895 |}
w1405+  poor 0.0421765 Ml
rich  0.0116293 |
ale  v0:40.5- oor _ 0.331313 NG
rich  0.0971295 |
v1:40.5+ poor  0.134106 NN
rich  0.105933 [N
P(E)= ) P(row)

rows matching E




I n fe re n Ce Female v0:40.5-

Joint

gender hours_worked wealth

poor 0253122 NG
. rich  0.0245895 |}
Wlth the v1:40.5+ poor 0.0421768 |}
rich  0.0116293 ||
Male  v0:40.5- poor 0.331313 |G
rich  0.0971295 N
v1:40.5+ poor 0.134106 |G
rich  0.105933 [
P(row)

P(E| | E,) = P(E.)

P(El A Ez) _ Tows matching £, and E,
E P(row)

rows matching £,




gender hours_worked wealth

I f fe rence (Female v0:40.5-  poor 0.253122 NG

0.0245895 |}

. rich
Wlth the ¥ vi405+  poor  0.0421765 Ml
JOlnt rich  0.0116293 |

ale v0:40.5- oor 0.331313

rich  0.0971295 |

t v1:40.5+ poor  0.134106 —

rich  0.105933 |

P(row)
P(El A Ez) __ rows matching £, and E,

P(E,) EP(row)

rows matching £,

P(E| | E,) =

P(Male | Poor) = 0.4654 / 0.7604 = 0.612




Expected values

Given discrete random variable X, the expected value of
X, written E[X] Is

EX]=) zP(X =z)
TEX

We also can talk about the expected value of functions
of X

E[f(X) =) f(z)P(X =z)

TeX



Covariance

Given two discrete r.v.”s X and Y, we define the
covariance of Xand Y as

Cov(X,Y)=E|(X — E(X))(Y — E(Y))]

e.g., X=gender, Y=playsFootball
or X=gender, Y=leftHanded

Remembd  pix] =Y zP(X =z)

TEX



Your first consulting job €.

" A
m A billionaire from the suburbs of Seattle asks
you a question:

He says: | have thumbtack, if | flip it, what's the
probability it will fall with the nail up?

You say: Please flip it a few times:

N~ LR b

You say: The probability is: . &
He says: Why???

You say: Because...



Thumbtack — Binomial Distributio

—_

élx QKCFS) @x(} B)—[\
.. 9(1*9)\&1/

m Flips are i.i.d.:
Independent events

Identically distributed according to Binomial
distribution

m Sequence D of oy Heads and a5 Tails

PR D e




Maximum Likelihood Estimation
" J

m Data: Observed set D of oy Heads and o Tails

m Hypothesis: Binomial distribution

m Learning 0 is an optimization problem
What's the objective function?

m MLE: Choose 0 that maximizes the probability of
observed data:

) = arg mgax P(D|0)

= arg m@ax In P(D | 6)



Maximum Likelihood Estimate for ©
"

] -~

0 = argmax InP(D|0) VN

0

arg mgax INnOH (1 —0)T

= Set derivative to zero: |4 | P(D | 0) = 0




—~

0
a0 )
do ~ @
O =

= argm{)ax InP(D | 0)
= argmax lnﬁaH(l—H)jf% 9.0 + ol M(/-g}

OZHQ-AVZQ,}_Q( 9 )2 (I 0)

DLH

b -

m Set derivative to zero:

D=

,;_ + XU ()

Ay
Xy, + b(h;,

20
A O("“S(l—@\ 2 iw(\~aj

AH L
> 6

(- &Y
{

—_——

\-e

d
— InP(D|0) =0
5 MP(D]0)




How many flips do | need?




E = owsW;( PéP79>

Bayesian Learning /¢

" A
- m Use Bayes rule:

P(D | 9)P(6)
M“Zf ~  P(D)

m Or equivalently:

P(0|D) o P(D|0)P(0)




Be|ta prior distribution — P(0)
" S

9'3H 1(1 O)JBT 1 Mean:
P(0) = ~ Beta(By, 3
@ B(BH BT) € a( H: T) Mode:

m Likelihood function: P(D|0) = 6%%(1 —0)*T
m Posterior: P(0 | D) o« P(D|0)P(0)




Posterior distribution
"
~ m Prior: Beta(B8y. 37)
m Data: ay heads and a tails

m Posterior distribution:

P(0 | D) ~ Beta(By + oy, Br + ar)




Beta(30,20)

MAP for Beta distribution '

O _ ;3?

pButan—1(1 — g)Ar+ar—1
BB + oz, Br + aT)

ameter value

~ Beta(By+aoy, Br+ar)

P(0 | D) =

m MAP: use most likely parameter:

) = argmax P(0 | D) = ﬁdf”"*g* -
0 = oLy + Py tPr

m Beta prior equivalent to extra thumbtack flips
m As N — oo, prior is “forgotten”
m But, for small sample size, prior is important!



Lejeune Dirichlet

Dirichlet distribution

 number of heads in N flips of a two-sided coin
— follows a binomial distribution
— Beta is a good prior (conjugate prior for binomial)

Johann Peter Gustav Lejeune Dirichlet

. . . Born ebrual
 what it’ s not two-sided, but k-sided? Diran,Fsr Env
Died 5 May 1858 (aged 54)
— follows a multinomial distribution N e
— Dirichlet distribution is the conjugate prior ey P o
Institutions Un:rvers:rty of Berlin
K Uniersty of Gotingen
Alma mater University of Bonn
P 0 9 9 . ]- 9 (Q 1— 1) Doctoral advisor Simeon [;yoisgon
( 1’ 2, e K) T B Z' Doctoral students :Z:::Z:: UE:;ccfnstcin
(a) . Leopold Kronecker

(A Rudolf Lipschitz
Carl Wilhelm Borchargt

Known for Dirichlet function
Dirichlet eta function



Estimating Parameters

« Maximum Likelihood Estimate (MLE): choose
0 that maximizes probability of observed data D

AN

0 = arg m@ax P(D|0)

 Maximum a Posteriori (MAP) estimate:
choose 0 that is most probable given prior
probability and the data

0 = argmax P(0|D)

0
= arg m@ax = P(Dp‘(z;f(e)




You should know

* Probability basics
— random variables, events, sample space, conditional probs, ...
— independence of random variables
— Bayes rule
— Joint probability distributions
— calculating probabilities from the joint distribution

* Point estimation
— maximum likelihood estimates
— maximum a posteriori estimates
— distributions — binomial, Beta, Dirichlet, ...
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Example: Bernoulli model -
Data:
e We observed Niid coin tossing: 0={1,0, 1, ..., 0}
Representation:
Binary r.v: X, = {0.1}
Model: _[1-0 forx=0 o
e ]9 for x =1 = P(x)=6"(1-0)

How to write the likelihood of a single observation x;?

P(Z‘\‘i ) - (9"3:’ (1 . 9)1—):5

The likelihood of datasetO={x,, ..., xx}:

N
S1-x;

iml

N N _ v\
P(x. %Xy |O) =[P, |O) =] [(67A-0)"") =67 (1-0)7 =o"=1-0)"*
i=1 i=1




