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Today: 
•  The Big Picture 
•  Overfitting 
•  Review: probability 

Readings: 
Decision trees, overfiting 
•  Mitchell, Chapter 3 

Probability review 
•  Bishop Ch. 1 thru 1.2.3 
•  Bishop, Ch. 2 thru 2.2 
•  Andrew Moore’s online 

tutorial 



Function Approximation:   

Problem Setting: 
•  Set of possible instances X  

•  Unknown target function f : XY	



•  Set of function hypotheses H={ h | h : XY }	



Input: 
•  Training examples {<x(i),y(i)>} of unknown target function f	


Output: 
•  Hypothesis h ∈ H that best approximates target function f	





Function Approximation: Decision Tree Learning 

Problem Setting: 
•  Set of possible instances X 

–  each instance x in X is a feature vector  
x = < x1, x2 … xn> 

•  Unknown target function f : XY	


–  Y is discrete valued 

•  Set of function hypotheses H={ h | h : XY }	


–  each hypothesis h is a decision tree 

Input: 
•  Training examples {<x(i),y(i)>} of unknown target function f	


Output: 
•  Hypothesis h ∈ H that best approximates target function f	





node = Root 

[ID3, C4.5, Quinlan] 



Information Gain (also called mutual information) 
between input attribute A and target variable Y 

Information Gain is the expected reduction in entropy 
of target variable Y for data sample S, due to sorting 
on variable A  



Function approximation as Search 
for the best hypothesis 

•  ID3 performs heuristic 
search through space of 
decision trees 



Function Approximation: The Big Picture 







Which Tree Should We Output? 
•  ID3 performs heuristic 

search through space of 
decision trees 

•  It stops at smallest 
acceptable tree. Why? 

Occam’s razor: prefer the 
simplest hypothesis that 
fits the data 



Why Prefer Short Hypotheses? (Occam’s Razor) 

Arguments in favor: 

Arguments opposed:  



Why Prefer Short Hypotheses? (Occam’s Razor) 

Argument in favor: 
•  Fewer short hypotheses than long ones 
 a short hypothesis that fits the data is less likely to be 

a statistical coincidence 

Argument opposed: 
•  Also fewer hypotheses containing a prime number of 

nodes and attributes beginning with “Z” 
•  What’s so special about “short” hypotheses, instead 

of “prime number of nodes”? 





Overfitting 
Consider a hypothesis h and its 
•  Error rate over training data: 
•  True error rate over all data:  



Overfitting 
Consider a hypothesis h and its 
•  Error rate over training data: 
•  True error rate over all data:  

We say h overfits the training data if 

Amount of overfitting =  









Split data into training and validation set	



Create tree that classifies training set correctly	













What you should know: 
•  Well posed function approximation problems: 

–  Instance space, X 
–  Sample of labeled training data { <x(i), y(i)>} 
–  Hypothesis space, H = { f: XY } 

•  Learning is a search/optimization problem over H 
–  Various objective functions 

•  minimize training error (0-1 loss)  
•  among hypotheses that minimize training error, select smallest (?) 

–  But inductive learning without some bias is futile ! 

•  Decision tree learning 
–  Greedy top-down learning of decision trees (ID3, C4.5, ...) 
–  Overfitting and tree post-pruning 
–  Extensions… 



Extra slides 

extensions to decision tree learning 







Questions to think about (1) 
•  ID3 and C4.5 are heuristic algorithms that 

search through the space of decision trees.  
Why not just do an exhaustive search? 



Questions to think about (2) 
•  Consider target function f: <x1,x2>  y, 

where x1 and x2 are real-valued, y is 
boolean.  What is the set of decision surfaces 
describable with decision trees that use each 
attribute at most once? 



Questions to think about (3) 
•  Why use Information Gain to select attributes 

in decision trees?  What other criteria seem 
reasonable, and what are the tradeoffs in 
making this choice?   



Machine Learning 10-701 
Tom M. Mitchell 

Machine Learning Department 
Carnegie Mellon University 

September 15, 2011 

Today: 
•  Review: probability 

Readings: 

Probability review 
•  Bishop Ch. 1 thru 1.2.3 
•  Bishop, Ch. 2 thru 2.2 
•  Andrew Moore’s online 

tutorial 

many of these slides are 
derived from William Cohen, 
Andrew Moore, Aarti Singh, 
Eric Xing. Thanks! 



Probability Overview 
•  Events  

–  discrete random variables, continuous random variables, 
compound events 

•  Axioms of probability 
–  What defines a reasonable theory of uncertainty 

•  Independent events 
•  Conditional probabilities 
•  Bayes rule and beliefs 
•  Joint probability distribution 
•  Expectations 
•  Independence, Conditional independence 



Random Variables 

•  Informally, A is a random variable if 
–  A denotes something about which we are uncertain 
–  perhaps the outcome of a randomized experiment  

•  Examples 
A = True if a randomly drawn person from our class is female 
A = The hometown of a randomly drawn person from our class 
A = True if two randomly drawn persons from our class have same birthday 

•  Define P(A) as “the fraction of possible worlds in which A is true” or       
“the fraction of times A holds, in repeated runs of the random experiment” 
–  the set of possible worlds is called the sample space, S 
–  A random variable A is a function defined over S 

                        A: S  {0,1} 



A little formalism 

More formally, we have 
•  a sample space S (e.g., set of students in our class) 

–  aka the set of possible worlds 

•  a random variable is a function defined over the sample 
space 
–  Gender: S  { m, f } 
–  Height: S  Reals 

•  an event is a subset of S 
–  e.g., the subset of S for which Gender=f 
–  e.g., the subset of S for which (Gender=m) AND (eyeColor=blue) 

•  we’re often interested in probabilities of specific events 
•  and of specific events conditioned on other specific events  



Visualizing A 

Sample space 
of all possible 
worlds 

Its area is 1 Worlds in which A is False 

Worlds in which 
A is true 

P(A) = Area of 
reddish oval 



The Axioms of Probability 

•  0 <= P(A) <= 1 
•  P(True) = 1 
•  P(False) = 0 
•  P(A or B) = P(A) + P(B) - P(A and B) 

[di Finetti 1931]: 

when gambling based on “uncertainty formalism A” you can 
be exploited by an opponent 

iff 

your uncertainty formalism A violates these axioms 



Interpreting the axioms 

•  0 <= P(A) <= 1 
•  P(True) = 1 
•  P(False) = 0 
•  P(A or B) = P(A) + P(B) - P(A and B) 

The area of A can’t 
get any smaller than 0 

And a zero area 
would mean no 
world could ever 
have A true  



Interpreting the axioms 
•  0 <= P(A) <= 1 
•  P(True) = 1 
•  P(False) = 0 
•  P(A or B) = P(A) + P(B) - P(A and B) 

The area of A can’t 
get any bigger than 1 

And an area of 1 
would mean all 
worlds will have A 
true  



Interpreting the axioms 

•  0 <= P(A) <= 1 
•  P(True) = 1 
•  P(False) = 0 
•  P(A or B) = P(A) + P(B) - P(A and B) 



Theorems from the Axioms 

•  0 <= P(A) <= 1, P(True) = 1, P(False) = 0 
•  P(A or B) = P(A) + P(B) - P(A and B) 

 P(not A) = P(~A) = 1-P(A) 



Theorems from the Axioms 

•  0 <= P(A) <= 1, P(True) = 1, P(False) = 0 
•  P(A or B) = P(A) + P(B) - P(A and B) 

 P(not A) = P(~A) = 1-P(A) 

P(A or ~A) = 1             P(A and ~A) = 0 

P(A or ~A) = P(A) + P(~A) - P(A and ~A) 

         1      = P(A) + P(~A) + 0 



Elementary Probability in 
Pictures 
•  P(~A) + P(A) = 1 

A ~A 



Another useful theorem 

•  0 <= P(A) <= 1, P(True) = 1, P(False) = 0, 
    P(A or B) = P(A) + P(B) - P(A and B) 

 P(A) = P(A ^ B) + P(A ^ ~B) 

A =  [A and (B or ~B)]  =  [(A and B) or (A and ~B)] 

P(A) = P(A and B) + P(A and ~B) – P((A and B) and (A and ~B)) 

P(A) = P(A and B) + P(A and ~B) – P(A and B and A and ~B) 



Elementary Probability in Pictures 
•  P(A) = P(A ^ B) + P(A ^ ~B) 

B 
A ^ ~B 

A ^ B 



Multivalued Discrete Random 
Variables 

•  Suppose A can take on more than 2 values 
•  A is a random variable with arity k if it can take on 

exactly one value out of {v1,v2, ... vk} 
•  Thus… 

€ 

P(A = v1∨ A = v2 ∨ ...∨ A = vk ) =1



Elementary Probability in 
Pictures 

A=1 

A=2 

A=3 

A=4 

A=5 



Definition of Conditional 
Probability 

                     P(A ^ B)  
P(A|B)  =  ----------- 
                    P(B)  

Corollary: The Chain Rule 
P(A ^ B) = P(A|B) P(B)  



Conditional Probability in Pictures 

A=1 

A=2 

A=3 

A=4 

A=5 

picture:   P(B|A=2) 



Independent Events 
•  Definition: two events A and B are 

independent if Pr(A and B)=Pr(A)*Pr(B) 
•  Intuition: knowing A tells us nothing 

about the value of B (and vice versa) 



Picture “A independent of B” 



Elementary Probability in 
Pictures 
•  Let’s write 2 expressions for P(A ^ B)  

B 
A 

A ^ B 



P(B|A) * P(A) 

P(B) 
P(A|B) = 

Bayes, Thomas (1763) An essay 
towards solving a problem in the doctrine 
of chances. Philosophical Transactions of 
the Royal Society of London, 53:370-418 

…by no means merely a curious speculation in the doctrine of chances, 
but necessary to be solved in order to a sure foundation for all our 
reasonings concerning past facts, and what is likely to be hereafter…. 
necessary to be considered by any that would give a clear account of the 
strength of analogical or inductive reasoning… 

Bayes’ rule 

we call P(A) the “prior” 

and P(A|B) the “posterior” 



Other Forms of Bayes Rule 



Applying Bayes Rule 

A = you have the flu,   B = you just coughed 

Assume: 
P(A) = 0.05 
P(B|A) = 0.80 
P(B| ~A) = 0.2 

what is P(flu | cough) = P(A|B)? 



You should know 
•  Events  

–  discrete random variables, continuous random variables, 
compound events 

•  Axioms of probability 
–  What defines a reasonable theory of uncertainty 

•  Independent events 
•  Conditional probabilities 
•  Bayes rule and beliefs 



what does all this have to do with 
function approximation? 









Maximum Likelihood Estimate for Θ 















Dirichlet distribution 
•  number of heads in N flips of a two-sided coin 

–  follows a binomial distribution 
–  Beta is a good prior (conjugate prior for binomial) 

•  what it’s not two-sided, but k-sided? 
–  follows a multinomial distribution 
–  Dirichlet distribution is the conjugate prior 



Estimating Parameters 
•  Maximum Likelihood Estimate (MLE): choose 
θ that maximizes probability of observed data 

•  Maximum a Posteriori (MAP) estimate: 
choose θ that is most probable given prior 
probability and the data 



You should know 

•  Probability basics 
–  random variables, events, sample space, conditional probs, … 
–  independence of random variables 
–  Bayes rule 
–  Joint probability distributions 
–  calculating probabilities from the joint distribution 

•  Point estimation  
–  maximum likelihood estimates 
–  maximum a posteriori estimates 
–  distributions – binomial, Beta, Dirichlet, … 



Extra slides 



The Joint Distribution 

Recipe for making a joint 
distribution of M variables: 

Example: Boolean 
variables A, B, C 



The Joint Distribution 

Recipe for making a joint 
distribution of M variables: 

1.  Make a truth table listing all 
combinations of values of 
your variables (if there are 
M Boolean variables then 
the table will have 2M rows). 

Example: Boolean 
variables A, B, C 

A B C 
0 0 0 

0 0 1 

0 1 0 

0 1 1 

1 0 0 

1 0 1 

1 1 0 

1 1 1 



The Joint Distribution 

Recipe for making a joint 
distribution of M variables: 

1.  Make a truth table listing all 
combinations of values of 
your variables (if there are 
M Boolean variables then 
the table will have 2M rows). 

2.  For each combination of 
values, say how probable it 
is. 

Example: Boolean 
variables A, B, C 

A B C Prob 
0 0 0 0.30 

0 0 1 0.05 

0 1 0 0.10 

0 1 1 0.05 

1 0 0 0.05 

1 0 1 0.10 

1 1 0 0.25 

1 1 1 0.10 



The Joint Distribution 

Recipe for making a joint 
distribution of M variables: 

1.  Make a truth table listing all 
combinations of values of 
your variables (if there are 
M Boolean variables then 
the table will have 2M rows). 

2.  For each combination of 
values, say how probable it 
is. 

3.  If you subscribe to the 
axioms of probability, those 
numbers must sum to 1. 

Example: Boolean 
variables A, B, C 

A B C Prob 
0 0 0 0.30 

0 0 1 0.05 

0 1 0 0.10 

0 1 1 0.05 

1 0 0 0.05 

1 0 1 0.10 

1 1 0 0.25 

1 1 1 0.10 

A 

B 

C 0.05 
0.25 

0.10 0.05 0.05 

0.10 

0.10 
0.30 



Using the 
Joint 

One you have the JD 
you can ask for the 
probability of any logical 
expression involving 
your attribute 



Using the 
Joint 

P(Poor Male) = 0.4654 



Using the 
Joint 

P(Poor) = 0.7604 



Inference 
with the 
Joint 



Inference 
with the 
Joint 

P(Male | Poor) = 0.4654 / 0.7604 = 0.612   



Expected values 
Given discrete random variable X, the expected value of 

X, written E[X] is 

We also can talk about the expected value of functions 
of X 



Covariance 
Given two discrete r.v.’s X and Y, we define the 

covariance of X and Y as 

e.g., X=gender, Y=playsFootball 
or     X=gender, Y=leftHanded 

Remember: 









Maximum Likelihood Estimate for Θ 















Dirichlet distribution 
•  number of heads in N flips of a two-sided coin 

–  follows a binomial distribution 
–  Beta is a good prior (conjugate prior for binomial) 

•  what it’s not two-sided, but k-sided? 
–  follows a multinomial distribution 
–  Dirichlet distribution is the conjugate prior 



Estimating Parameters 
•  Maximum Likelihood Estimate (MLE): choose 
θ that maximizes probability of observed data 

•  Maximum a Posteriori (MAP) estimate: 
choose θ that is most probable given prior 
probability and the data 



You should know 

•  Probability basics 
–  random variables, events, sample space, conditional probs, … 
–  independence of random variables 
–  Bayes rule 
–  Joint probability distributions 
–  calculating probabilities from the joint distribution 

•  Point estimation  
–  maximum likelihood estimates 
–  maximum a posteriori estimates 
–  distributions – binomial, Beta, Dirichlet, … 




