Neural Networks

Aarti Singh

Machine Learning 10-601
Nov 3, 2011

Slides Courtesy: Tom Mitchell

ACHI

Logistic Regression

Assumes the following functional form for P(Y | X):

1

P(Y =11X) = 1 + exp(—(wo + >, w; X5))

Logistic function applied to a linear

function of the data

N
Logistic) S,
function QO 4

(or Sigmoid): 1+ exp(—=z)

0.2f

01}

Features can be discrete or continuous!

Logistic Regression is a Linear
Classifier!

Assumes the following functional form for P(Y | X):
1

P(Y =11X) = 1 + exp(—(wo + >, w; X5))

wo + Z w; X;

I i

Decision boundary:

0
P(Y =0|X) = P(Y =1|X)
1

0
1 ;

(Linear Decision Boundary)

Training Logistic Regression

How to learn the parameters w,, w,, ... w,?
Training Data {(X(j)ay(j))}?zl x0) = (X(j), - ,Xc(ij))

Maximum (Conditional) Likelihood Estimates

n . .
WNMCOLE = arg max 11 P(Y(3)|X(3),w)
j=1

Discriminative philosophy — Don’t waste effort learning P(X),
focus on P(Y|X) — that’s all that matters for classification!

Optimizing convex function

 Max Conditional log-likelihood = Min Negative Conditional log-
likelihood

* Negative Conditional log-likelihood is a convex function
Gradient Descent (convex)

25+ Gradient:
9
20 e
Ny ““‘ al(W) 8Z(W)
NN OO — N~ 7 Ny
L \\\‘t“:"\‘\\‘\‘\“\\\\\““‘\“““““““““‘:““ Vwl(w) = | o T]
A 553 wo W
\\“\‘_“\“\\\\\\\\\‘\““““““ 8505
\' NN Update rule: Learning rate, n>0
Aw = nVwl(w)

ERC O PEON Uag(W)
wy ¢

5

Logistic function as a Graph

1
T 1+ exp(—(wo + >, w; X;))

Output, o(x) = o(wg + Z w; X;)

Sigmoid Unit

a O—L >
net =2 w; x; L
=0

[o = G(net) =

-net
l +e

Neural Networks to learnf: X =2 Y

 fcan be a non-linear function
e X (vector of) continuous and/or discrete variables
* Y (vector of) continuous and/or discrete variables

* Neural networks - Represent f by network of logistic/sigmoid
units:

 Output layer, Y

KN]
- > ;
> s o~ <
. ~Jo -,
> < <
\) ,

Hidden layer, H

Multilayer Networks of Sigmoid Units

Neural Network trained to distinguish vowel sounds using 2 formants (features)

4000

a head
a hid

+ hod

x had

¢ hawed
v heard
o heed
< hud

» who'd
~ hood

Output
head hid layer A who’d hood

0 500 1000 1400

Two layers of logistic units Highly non-linear decision surface

Neural Network
trained to drive a

car!

Straight
Ahead

Sharp
Right

30 Output
Units

30x32 Sensor
Input Retina

Weights to output units from the hidden unit
EEERT

Weights of each pixel for one hidden unit

Connectionist Models

Consider humans:
e Neuron switching time ~ .001 second
e Number of neurons ~ 10'°
e Connections per neuron ~ 10*73
e Scene recognition time ~ .1 second
e 100 inference steps doesn’t seem like enough

— much parallel computation

Properties of artificial neural nets (ANN'’s):
e Many neuron-like threshold switching units
e Many weighted interconnections among units

e Highly parallel, distributed process

Forward Propagation for prediction

Prediction — Given neural network (hidden units and weights), use it to predict
the label of a test point

Forward Propagation —
Start from input layer
For each subsequent layer, compute output of sigmoid unit

Sigmoid unit: O(X) = a(wo-l-Zwi:cz-)

()
1-Hidden layer, o(x) = o|lwy+S wro(wl +5 wha,
1 output NN: (x) 0 zh: h‘(0 XZ: ’ Z),

\ Oy,]

Training Neural Networks

)0

=) W x: |
ner gbwl X; o0 = G(net) =

-net
l+e

o(x) is the sigmoid function
1
1+e*
Nice property: %f—) =o(x)(1 —o(x)) Differentiable

We can derive gradient decent rules to train
e One sigmoid unit

o Multilayer networks of sigmoid units —
Backpropagation

M(C)LE Training for Neural Networks

« Consider regression problem f:X-2>Y , for scalar Y

y =1f(X) + ¢

assume noise N(0,0,), iid

deterministic

 Let's maximize the conditional data likelihood

W «— arg max In HP(YZ|XZ, W)
l

W « arg mv[i/n Z(yl — ﬂfﬂl))Q Learned
l ! neural network

Train weights of all units to minimize sum of squared errors
of predicted network outputs

MAP Training for Neural Networks

« Consider regression problem f:X-2>Y , for scalar Y
y = f(X) + € ——_noise N(0,,)
" deterministic

lGaussian P(W) = N(0O,cl)
W «— arg max in P(W) [PV Xt W)
l

W «— arg min > wi| + | D - f(ah))?
i z
A _
In P(W) <= c > w?

Train weights of all units to minimize sum of squared errors
of predicted network outputs plus weight magnitudes

Gradient Descent

25+

E — Mean Square Error

Gradient

OF OF oF

. .

Owy dwi’ Owy

V E[@]

Training rule:
AW = —nV B[]

1.e.,
OF For Neural Networks,

Aw; = —n% E[w] no longer convex in w

Error Gradient for a Sigmoid Unit

Sigmoid Unit
_ZK O
netzgw-x- O . _ 1
=0 ! o = G(net) = —
Il +e
But we know:
00| __8o(neﬂ)__ (1— ol
dnet! . Onet! O o
1 onet! _ o(w-3') |
_ §2|j2(y|—ol) 8w,1(y|_0|) o = w0
B a Ow; OF |
|) _ _ B |
dol Onet! ow; IEZD(V' ol)ol(1—ol)x!
= —X(yl—ol)

| onet! Ow;

Backpropagation Algorithm (MLE) head hid 4 whod hood

Initialize all weights to small random numbers.
Until satisfied, Do

e For each training example, Do

1. Input the training example to the network
and compute the network outputs > Using Forward propagation

2. For each output unit &
op + oh(1 — OL)(ykI — o))
O, = unit output
3. For each hidden unit h ((l)dbhtained by E)rward

o1+ oh(1 — o)) > Wi OF propagation)
sEoutputs

Yy, = target output (label)

4. Update each network weight w; ; w; = wt fromito]

. . |
wij ¢ Wij + Awi, Note: if i is input variable,
where 0; = X

Incremental (Stochastic) Gradient Descent

Batch mode Gradient Descent:
Do until satisfied

1. Compute the gradient V Ep[w] Using all training data D
2. W+ W — nV Ep|]

Bpli] = 5 ¥ (1= o)

Incremental mode Gradient Descent:
Do until satisfied

e For each training example | in D

1. Compute the gradient VEI[’JJ']
2. W« W — nVE, []
E|[@] = (y1— o)
Incremental Gradient Descent can approximate
Batch Gradient Descent arbitrarily closely if n
made small enough

More on Backpropagation

e Gradient descent over entire network weight
vector

e Easily generalized to arbitrary directed graphs

e Will find a local, not necessarily global error
minimum

— In practice, often works well (can run multiple
times)

e Often include weight momentum o
Awgj(n) = ndjxi; + aAw;;(n — 1)
e Minimizes error over training examples

— Will it generalize well to subsequent
examples?

e Training can take thousands of iterations —
slow!

e Using network after training is very fast

Objective/Error no
longer convex in
weights

Dealing with Overfitting

Error versus weight updates (example 1)
001 T T T

0.009 o TI’le]llI'lg SEet error g B

Validation set error f
0.008 -

0.007
0.006

Error

0.005
0.004
0.003

0.002
0 5000 10000 15000 20000

Number of weight updates
Our learning algorithm involves a parameter
n=number of gradient descent iterations
How do we choose n to optimize future error?
(note: similar issue for logistic regression, decision trees, ...)

e.g. the n that minimizes error rate of neural net over future data

Dealing with Overfitting

001

Error versus weight updates (example 1)
» ' o
0.009 [Training set error
0.008
0.007

g 0006 I

. . . o I MWW
Our learning algorithm involves a parameter K _

0.003

n=number of gradient descent iterations = = o
How do we choose n to optimize future error?

« Separate available data into training and validation set
« Use training to perform gradient descent
 n < number of iterations that optimizes validation set error

K-fold Cross-validation

|dea: train multiple times, leaving out a disjoint subset of data each time
for test. Average the test set accuracies.

Partition data into K disjoint subsets

For k=1to K
testData = kth subset
h < classifier trained™ on all data except for testData
accuracy(k) = accuracy of h on testData

end

FinalAccuracy = mean of the K recorded testset accuracies

* might withhold some of this to choose number of gradient decent steps

Leave-one-out Cross-validation

This is just k-fold cross validation leaving out one example each iteration

Partition data into K disjoint subsets, each containing one example
For k=1to K

testData = kth subset
h < classifier trained™ on all data except for testData

accuracy(k) = accuracy of h on testData
end

FinalAccuracy = mean of the K recorded testset accuracies

* might withhold some of this to choose number of gradient decent steps

Dealing with Overfitting

 Cross-validation

* Regularization — small weights imply NN is linear (low VC
dimension)

Logistic output

« Control number of hidden units — low complexity

Expressive Capabilities of ANNs

Boolean functions:

e Every boolean function can be represented by
network with single hidden layer

e but might require exponential (in number of
inputs) hidden units

Continuous functions:

e Every bounded continuous function can be
approximated with arbitrarily small error, by
network with one hidden layer [Cybenko 1989;
Hornik et al. 1989]

e Any function can be approximated to arbitrary
accuracy by a network with two hidden layers
[Cybenko 1988].

Learning Hidden Layer Representations

A target function:

Input Output
10000000 — 10000000
01000000 — 01000000
00100000 — 00100000
00010000 — 00010000
00001000 — 00001000
00000100 — 00000100
00000010 — 00000010
00000001 — 00000001

Can this be learned??

Learning Hidden Layer Representations

A network:

Learned hidden layer representation:

Input Hidden Output
Values

10000000 — .89 .04 .08 — 10000000
01000000 — .01 .11 .88 — 01000000
00100000 — .01 .97 .27 — 00100000
00010000 — .99 97 .71 — 00010000
00001000 — .03 .05 .02 — 00001000
00000100 — .22 .99 .99 — 00000100
00000010 — .80 .01 .98 — 00000010
00000001 — .60 .94 .01 — 00000001

Neural Nets for Face Recognition

left strt rght up

| ' ‘
f
.]
- - n

Typical input images

90% accurate learning head pose, and recognizing 1-of-20 faces

Learned Hidden Unit Weights

left strt rght up Learned WW
Q Q 0 ® strt ight
N\

Bl

30x32 |

e N
£
g

Typical input images

http://www.cs.cmu.edu/~tom /faces.html

Semantic Memory Model Based on ANN’s
[McClelland & Rogers, Nature 2003]

Pine
Oak
Rose
Daisy
Robin
Canary
Sunfish
Salmon

Item

CAN (€)
HAs |C)

Relation

No hierarchy given.

Train with assertions,
e.g., Can(Canary,Fly)

SA |COF 7N
e,
(7

Living thing
Plant
Animal
Tree
Flower
Bird
Flower
Pine
Oak
Rose
Daisy
Raobin
Canary

()| Sunfish

Salmon

Pretty
Tall
Living
Green
Red
Yellow

Grow
Move
Swim
Fly
Sing

Bark
Petals
Wings
Feathers
Scales
Gills
Roots
Skin

Attribute

Humans act as though they have a hierarchical memory
organization

1. Victims of Semantic Dementia progressively lose knowledge of objects

But they lose specific details first, general properties later, suggesting
hierarchical memory organization

Thing
NonLiving I;\n%
2. Children appear to learn general N Plant Animal
categories and properties first, following PN
the same hierarchy, top down’. Fish Bird
/T
Canary

Question: What learning mechanism could produce this emergent hierarchy?

* some debate remains on this.

Memory deterioration follows semantic hierarchy
[McClelland & Rogers, Nature 2003]

a b

Picture naming responses for JL 1.07

ltem Sept.91 March 92 March 93 L1 Ds

Bird + ; Animal g 081 |HEC

o OIF

Chicken + , Animal =

Duck + Bird Dog S 087

Swan + Bird Animal S il
Eagle Duck Bird Horse g 044

Ostrich Swan Bird Animal ri?

Peacock Duck Bird Vehicle 0.2

Penguin Duck Bird Part of animal ﬂ

Rooster Chicken Chicken Dog 0.0-=50om SCat Dist

Feature type

c IF's delayed copy of a camel d DC’s delayed copy of a swan

b
Epoch 250 Epoch 750 Epoch 2,500 Epoch 500 Epoch 1,500 Epoch 2,500

Pine [I]“ “]] 254
S alfkn. Ll " " 2.0-
Rose [I [lll || "
Daisy '][I [Il ""
Robin Hefncifll [Tl " ﬂ']
ool e M (ML oo [r2 [0 4

1.5+

Euclidean distance

ccC @ = <D>~2%g>~.c: 0%8 E;.LCOC
Salmon SE5 5, 882 BLEBosdS KBILLEToIZEO
s 0 1 555 c70 =atPgRss ©otC2sss
0 on 5%) N
c d
1.0
1.2 1
§ 1.0 0.8
!
1%
é 0.8 4 § 0.6-
c © — Canary-CAN-Grow
@ 0.6 1 = ~ Canary-CAN-Move
3 — Plants vs. Animals | < 047 == Canary-CAN-Fly
S 04 — Birds vs. Fish — Canary-CAN-Sing
w e Trees vs, Flowers 024 == Pine-HAS-Leaves
0.2 = Robin vs. Canary '
== Pine vs. Oak
0.0 T T T T T 0.0+ T T T T T
0 500 1,000 1,500 2,000 2,500 0 500 1,000 1,500 2,000 2,500
Leaming epochs Learning epochs

Figure 4 | The process of differentiation of conceptual representations. The representations are those seen in the feedforward
network model shown in FIG. 3. a | Acquired patterns of activation that represent the eight objects in the training set at three pointsin
the leaming process (epochs 250, 750 and 2,500). Early in leaming, the pattems are undifferentiated; the first difference to appear is
between plants and animals. Later, the patterns show clear differentiation at both the superordinate (plant-animal) and intermediate
(bird-fish/tree-flower) levels. Finally, the individual concepts are differentiated, but the overall hierarchical organization of the similarity
structure remains. b | A standard hierarchical clustering analysis program has been used to visualize the similarity structure in the

Training Networks on Time Series

« Suppose we want to predict next state of world
— and it depends on history of unknown length

— e.g., robot with forward-facing sensors trying to predict next
sensor reading as it moves and turns

Training Networks on Time Series

« Suppose we want to predict next state of world
— and it depends on history of unknown length

— e.g., robot with forward-facing sensors trying to predict next
sensor reading as it moves and turns

* |dea: use hidden layer in network to capture state history

+_v({ + 1)

x(r)

(«) Feedforward network (b) Recurrent network

Training Networks on Time Series

How can we train recurrent net??

* vir+1)

(c) Recurrent network
unfolded in time

Artificial Neural Networks: Summary

Actively used to model distributed computation in brain
Highly non-linear regression/classification

Vector-valued inputs and outputs

Potentially millions of parameters to estimate - overfitting

Hidden layers learn intermediate representations — how many
to use?

Prediction — Forward propagation
Gradient descent (Back-propagation), local minima problems

Mostly obsolete — kernel tricks are more popular, but coming
back in new form as deep belief networks (probabilistic
interpretation)

