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i.i.d to sequential data

* So far we assumed independent, {X;}" , “p(X)

identically distributed data

* Sequential data

— Time-series data
E.g. Speech

Amplitude

Tm (e)

— Characters in a sentence . . . . E
— Base pairs along a DNA strand
3 ! ! ! IJ ! !




Representing sequential data

* How do we represent and learn P(X,, X,, ..., X)?

PEEaEE

X1 X X3 X4 Xs

e Every variable depends on past few variables.



Markov Models

e Joint Distribution
p(X) — p(X17X27'°°7Xn)
= p(X1)p(X2|X1)p(X35]| X2, X1) ... p(X0n|Xpn=1, -, X1)

HP(X X1, X)) Chain rule
1=1

* Markov Assumption (mt order) Current observation

- | only depends on past
p(X) = Hp()( X1, Xnem) m oybsefva‘rions i
i=1

n

* Special case of Bayes Nets p(X) = Hp(XZ- ipa(X;))
1=1



Markov Models

* Markov Assumption

15t order p(X) = ][p(XnlXno1)

2" order  p(X) = Hp(Xn|Xn_1,Xn_z)



Markov Models

# parameters in
stationary model

* Markov Assumption K-ary variables

n

15t order p(X) = ][p(XnlXno1) O(K?)
=1

mth Order p(X) — Hp(Xn‘Xn—la <o 7Xn—m) O(Km+1)
1 =1

n-1thorder 2(X) = J]p(XnlXn-1,..., X1) O(Kn)
1=1

= no assumptions — complete (but directed) graph

Homogeneous/stationary Markov model (probabilities don't depend on n)



Hidden Markov Models

* Distributions that characterize sequential data with few
parameters but are not limited by strong Markov assumptions.

Observation space O, €1y, Yy s Yy} e.g. pixels in
Hidden states S, €1, ..., I} e.g. {a,b,c,...z}



Hidden Markov Models

p(Sl,...,ST,Ol,...,OT)

15t order Markov assumption on hidden states {S;} t=1, ..., T
(can be extended to higher order).

Note: O, depends on all previous observations {0, ;,...0,}



HMM Example

e The Dishonest Casino

A casino has two die:

Fair dice

Loaded dice

Casino player switches back-&-
forth between fair and loaded die




HMM Example

e Observed sequence: {O,}i_,

O—O—O—O—O—O—

Y’: "
3 o":
F

e Hidden sequence {St}le or segmentation):

O—O—O—0O—0—0—




Hidden Markov Models

* Parameters — stationary/homogeneous markov model
(independent of time t)

. g S S,
Initial probabilities .
S, =1)=T11
p( 1 ) i Ol 02
Transition probabilities
P(S = lSea =1) = py p({Se}H o1, {0}) =
T
Emission probabilities p(S1) [ [ p(SelSe=1) [ [ p(O+15:)
t=2 t=1

0(0,=y|S=1) = ¢



HMM Example

e The Dishonest Casino

A casino has two die:

Fair dice
P(1) = P(2) =P(3) =P(5)=P(6) =1/6

Loaded dice
P(1) = P(2) = P(3) = P(5) = 1/10
P(6) =%

Casino player switches back-&-
forth between fair and loaded die
once every 20 turns




State Space Representation

* Switch between F and L once every 20 turns (1/20 = 0.05)

0.05
0.95 0.95
0.05
* HMM Parameters

Initial probs P(S;=L)=0.5=P(S,; =F)

Transition probs P(S,=L/F|S,,=L/F)=0.95
P(S,=F/L|S,,=L/F)=0.05

Emission probabilities P(O,=y|S=F)=1/6 v=1,2,3,4,5,6
P(O,=y|S=L)=1/10 vy=1,2,3,4,5

=1/2 y=6



HMM Problems

GIVEN: A sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

QUESTION

e How likely is this sequence, given our model of how the casino

works?
e Thisis the EVALUATION problem in HMMs

e What portion of the sequence was generated with the fair die, and

what portion with the loaded die?
e Thisis the DECODING question in HMMs

e How “loaded” is the loaded die? How “fair” is the fair die? How often

does the casino player change from fair to loaded, and back?
e Thisis the LEARNING question in HMMs



Three main problems in HMMs

* Evaluation — Given HMM parameters & observation seqn{O;}/_,

find P({O:}i=1) prob of observed sequence

* Decoding — Given HMM parameters & observation seqn{O: };—1

.....

sequence of hidden states

* Learning — Given HMM with unknown parameters and {0}
observation sequence

find argmgxp({Ot}lew) parameters that maximize

likelihood of observed data



HMM Algorithms

* Evaluation — What is the probability of the observed
sequence? Forward Algorithm

* Decoding — What is the probability that the third roll was
loaded given the observed sequence? Forward-Backward
Algorithm

— What is the most likely die sequence given the observed
sequence? Viterbi Algorithm

* Learning — Under what parameterization is the observed
sequence most probable? Baum-Welch Algorithm (EM)



Evaluation Problem

* Given HMM parameters p(51), p(St|Si-1),p(O:|S:) & observation
sequence {O:}i—,

S \Sa P S

find probability of observed sequence W
0.

p{OiL) = 30 PO {SiHL) foioz 8 O

requires summing over all possible hidden state values at all
times — K™ exponential # terms!

Instead:
p({Oi—1) =Y p({O}{Z), St = k)

I

ak  Compute recursively




Forward Probability

p({O:}/=1) = ZP({Ot}tT:h St =k) = ZCVI%
k k

Compute forward probability a't‘ recursively over t

of = p(O1,...,0, S, =k)

Introduce S, ,

Chain rule

Markov assumption

= p(O|Sy = k) Zai_lp(St = k|S;—1 = 1)



Forward Algorithm

Can compute o.* for all k, t using dynamic programming:
* Initialize:  o,*=p(0,]|S; =k) p(S; =k) for all k

 |terate:fort=2,..T

@ =p(0]S=k) 3 a_ p(S,=k|S.,=i)  forallk

* Termination: p({O:}1) =5 o

k



Decoding Problem 1

* Given HMM parameters p(51), p(St|Si-1),p(O:|S:) & observation
sequence {Ot}/—;

find probability that hidden state at time t was k 2(S: = k[{O:}/_,)

p(St — k? {Ot}le) — p(017 .. '7Ot7 St — kaOt-l—la .. '7OT)
= p(Ol, . .,Ot,St = k)p(Ot—l—l, .. .,OT‘St = k‘)

Compute recursively ok B




Backward Probability

p(St — k? {Ot};r:1> — p(017 . '7Otast — k)p(Ot-l—la . '7OT|St — k) — O‘fﬁf

Compute backward probability B{‘ recursively over t

S S
Bf = p(0t+1, ceey OT|St = k) A.Q t ) ttl
Ot+1

Introduce S, ,
Chain rule

Markov assumption

— Zp(SH_l = Z"St = k)p(0t+1|st—|—1 — Z.)/6175;4—1

)



Backward Algorithm
Can compute B¢ for all k, t using dynamic programming:
 Initialize: B;*=1 for all k

 |terate:fort=T-1, .., 1

Bf = > p(Str1 =ilS: = B)p(Ort1|See1 = D)Bis1 for all k

e Termination: p(S: =k, {Ot}thl) — Ozfﬁf

p(S; =k, {0} ) _ afﬂf ,
p({OL) 2 i

p(Se = k{0 }{Z)) =



Most likely state vs. Most likely
sequence

* Most likely state assignment at time t
arg m]?Xp(St = k{0, }]_)) = arg max oy kR

E.g. Which die was most likely used by the casino in the third roll given the

observed sequence?

 Most likely assignment of state sequence
arg max p({St}t 1|{Ot}t 1)

{Se}L
E.g. What was the most I|ker sequence of die rolls used by the casino
given the observed sequence? x y Pl y)

o| O 0.35

MLA of x? 0.05

. o| 7
Not the same solution ! MLA of (xy)? 7z o o5
Z| 7 o3




Decoding Problem 2

 Given HMM parameters p(S1), p(S:|Si—1), p(O¢|S;) & observation
sequence {0},

find most likely assignment of state sequence

arg max p({St}i=1{Os}i=1) = arg max p({St}i=1,{Oe}i=1)

= argmax max (St =k AS S {O)
\ o )
1
k
Vi
Compute recursively

VK probability of most likely sequence of states ending at
state S; =k



Viterbi Decoding

{giliél P({St}thla {Ot}tT:1) — m?x Vilf

Compute probability V't< recursively over t

‘/tk: = S magc p(St:k,Sl,...,St_l,Ol,...,Ot)
S1

Bayes rule a
Markov assumption O,

= p(04|S; = k) maxp(Sy = k|Se-1 = 1)V,



Viterbi Algorithm

Can compute V¥ for all k, t using dynamic programming:
e Initialize:  V,*=p(0,]S,;=k)p(S; =k) for all k

 |terate:fort=2,..T

VF = p(OyS; = k)maxp(S, = k|S;—1 =4V,  forallk

e Termination: {m;dx p({St}{1,{0:}21) :ml;dxvqlf
St :EF=1

Traceback: St = arg max Vi

Si—1 = argmax p(Sy|Se—1 = i)V,



Computational complexity

* What is the running time for Forward, Forward-Backward,
Viterbi?

Fort=1, .., T

k L O 7
oy = q E :&t—l Pik
i

O .
Bf = priq; " By forallk
)

k O '
Vyw = qk;t maxpj i L751—1
1

O(K?T) linear in T instead of O(K") exponential in T!



Learning Problem

e Given HMM with unknown parameters® = {{r;}, {pi;}, {qF}}
and observation sequence O = {O;}/_,

find parameters that maximize likelihood of observed data

arg max p({O;}1_,|0) But likelihood doesn’t factorize
0 since observations not i.i.d.

hidden variables — state sequence{S:}{_;

EM (Baum-Welch) Algorithm:

E-step — Fix parameters, find expected state assignments
M-step — Fix expected state assignments, update parameters



Baum-Welch (EM) Algorithm

e Start with random initialization of parameters

* E-step — Fix parameters, find expected state assignments

() = p(S, = i]0,0) = P
vi(t) = p(S¢ = 1|0, 0) L

Forward-Backward algorithm
§ij(t) = p(Si—1= 4, 5,= 4|0, 0)

_ p(St_l = Z|O, 9)p(St = j, Ot, e ooy OT|St_1 = 7:, (9)
p(Ota SRR OT|St—1 = 1, (9)

it —1) pij ¢5" B
Bt




Baum-Welch (EM) Algorithm

e Start with random initialization of parameters

» E-ste T
P ) 7i(t) = expected # times
vi(t) = p(S; = 1|0, 9) t=1 in state i

T-1
) 7(t) = expected # transitions
=t from state |

&ij(t) = p(Si—1=1,5¢= 3|0, 0)

T-1
Z & (t) = expected # transitions
=1 from state i to j

* M-step
i gk = > i—100,=1%i(t)
v T
_ —
Dij — {zll 'gij(t) > i=17i(t)




HMMs.. What you should know

Useful for modeling sequential data with few parameters
using discrete hidden states that satisfy Markov assumption

Representation - initial prob, transition prob, emission prob,

State space representation

Algorithms for inference and learning in HMMs

— Computing marginal likelihood of the observed sequence:
forward algorithm

— Predicting a single hidden state: forward-backward

— Predicting an entire sequence of hidden states: viterbi

— Learning HMM parameters: an EM algorithm known as Baum-
Welch



Some connections

e HMM & Dynamic Mixture Models

p(O1) = > p(O:]5)p(St)

|—> Choice of mixture component depends
on choice of components for previous
observations

Static mixture Dynamic mixture
5

N

X X X

X x

()

Nx

X

Lol




Some connections

e HMM vs Linear Dynamical Systems (Kalman Filters)

HMM:

Linear Dynamical Systems:

States are Discrete
Observations Discrete or Continuous

Observations and States are multi-
variate Gaussians whose means are
linear functions of their parent states

(see Bishop: Sec 13.3)



