Machine Learning 10-601

Tom M. Mitchell Machine Learning Department Carnegie Mellon University

October 13, 2011

Today:

- · Graphical models
- Bayes Nets:
 - Conditional independencies
 - Inference
 - Learning

Readings:

Required:

• Bishop chapter 8, through 8.2

Conditional Independence, Revisited

- · We said:
 - Each node is conditionally independent of its non-descendents, given its immediate parents.
- Does this rule give us all of the conditional independence relations implied by the Bayes network?
 - Not
 - E.g., X1 and X4 are conditionally indep given {X2, X3}
 - But X1 and X4 not conditionally indep given X3
 - For this, we need to understand D-separation

Easy Network 3: Head to Head

prove A cond indep of B given C? NO!

A C

Summary:

- p(a,b)=p(a)p(b)
- p(a,b|c) NotEqual p(a|c)p(b|c)

Explaining away.

e.g.,

- A=earthquake
- B=breakIn
- C=motionAlarm

X and Y are conditionally independent given Z, **if and only if** X and Y are D-separated by Z.

[Bishop, 8.2.2]

Suppose we have three sets of random variables: X, Y and Z

X and Y are $\underline{\textbf{D-separated}}$ by Z (and therefore conditionally indep, given Z) iff every path from every variable in X to every variable in Y is $\underline{\textbf{blocked}}$

A path from variable A to variable B is **blocked** if it includes a node such that either

1.arrows on the path meet either head-to-tail or tail-to-tail at the node and this node is in \boldsymbol{Z}

2.the arrows meet head-to-head at the node, and neither the node, nor any of its descendants, is in ${\sf Z}$

X and Y are **D-separated** by Z (and therefore conditionally indep, given Z) iff every path from every variable in X to every variable in Y is **blocked**

A path from variable A to variable B is **blocked** if it includes a node such that either

1.arrows on the path meet either head-to-tail or tail-to-tail at the node and this node is in Z

2.the arrows meet head-to-head at the node, and neither the node, nor any of its descendants, is in Z

X1 indep of X3 given X2?

X3 indep of X1 given X2?

X4 indep of X1 given X2?

X and Y are <u>D-separated</u> by Z (and therefore conditionally indep, given Z) iff every path from any variable in X to any variable in Y is <u>blocked</u> by Z

A path from variable A to variable B is **blocked** by Z if it includes a node such that either

1.arrows on the path meet either head-to-tail or tail-to-tail at the node and this node is in Z

2.the arrows meet head-to-head at the node, and neither the node, nor any of its descendants, is in $\ensuremath{\mathsf{Z}}$

X4 indep of X1 given X3?

X4 indep of X1 given {X3, X2}?

X4 indep of X1 given {}?

X and Y are **D-separated** by Z (and therefore conditionally indep, given Z) iff every path from any variable in X to any variable in Y is **blocked**

A path from variable A to variable B is **blocked** if it includes a node such that either

1.arrows on the path meet either head-to-tail or tail-to-tail at the node and this node is in Z

2.the arrows meet head-to-head at the node, and neither the node, nor any of its descendants, is in \boldsymbol{Z}

a indep of b given c?

a indep of b given f?

Markov Blanket

The Markov blanket of a node \mathbf{x}_i comprises the set of parents, children and co-parents of the node. It has the property that the conditional distribution of \mathbf{x}_i , conditioned on all the remaining variables in the graph, is dependent only on the variables in the Markov blanket.

co-parent = other side of X: 's colliders

from [Bishop, 8.2]

What You Should Know

- Bayes nets are convenient representation for encoding dependencies / conditional independence
- BN = Graph plus parameters of CPD's
 - Defines joint distribution over variables
 - Can calculate everything else from that
 - Though inference may be intractable
- Reading conditional independence relations from the graph
 - Each node is cond indep of non-descendents, given only its parents
 - D-separation
 - 'Explaining away'

See Bayes Net applet: http://www.cs.cmu.edu/~javabayes/Home/applet.html

Inference in Bayes Nets

- In general, intractable (NP-complete)
- For certain cases, tractable
 - Assigning probability to fully observed set of variables
 - Or if just one variable unobserved
 - Or for singly connected graphs (ie., no undirected loops)
 - · Belief propagation
- For multiply connected graphs
 - Junction tree
- Sometimes use Monte Carlo methods
 - Generate many samples according to the Bayes Net distribution, then count up the results
- Variational methods for tractable approximate solutions

Example

- Bird flu and Allegies both cause Sinus problems
- · Sinus problems cause Headaches and runny Nose

Prob. of joint assignment: easy

 Suppose we are interested in joint assignment <F=f,A=a,S=s,H=h,N=n>

What is P(f,a,s,h,n)?

let's use p(a,b) as shorthand for p(A=a, B=b)

Prob. of marginals: not so easy

• How do we calculate P(N=n)?

let's use p(a,b) as shorthand for p(A=a, B=b)

Generating a sample from joint distribution: easy

How can we generate random samples drawn according to P(F,A,S,H,N)?

let's use p(a,b) as shorthand for p(A=a, B=b)

Generating a sample from joint distribution: easy

Flu Allergy
Sinus
Nose

Note we can estimate marginals like P(N=n) by generating many samples

from joint distribution, then count the fraction of samples for which N=n

Similarly, for anything else we care about P(F=1|H=1, N=0)

→ weak but general method for estimating <u>any</u> probability term...

let's use p(a,b) as shorthand for p(A=a, B=b)

Prob. of marginals: not so easy

But sometimes the structure of the network allows us to be clever → avoid exponential work

eg., chain

Inference in Bayes Nets

- In general, intractable (NP-complete)
- For certain cases, tractable
 - Assigning probability to fully observed set of variables
 - Or if just one variable unobserved
 - Or for singly connected graphs (ie., no undirected loops)
 - · Variable elimination
 - · Belief propagation
- For multiply connected graphs
 - · Junction tree
- Sometimes use Monte Carlo methods
 - Generate many samples according to the Bayes Net distribution, then count up the results
- Variational methods for tractable approximate solutions