Machine Learning 10-701

Tom M. Mitchell
Machine Learning Department
Carnegie Mellon University

October 11, 2011

Today:

- · Graphical models
- Bayes Nets:
 - Representing distributions
 - Conditional independencies
 - Simple inference
 - · Simple learning

Readings:

Required:

• Bishop chapter 8, through 8.2

Graphical Models

- Key Idea:
 - Conditional independence assumptions useful
 - but Naïve Bayes is extreme!
 - Graphical models express sets of conditional independence assumptions via graph structure
 - Graph structure plus associated parameters define joint probability distribution over set of variables

• Two types of graphical models:

today

- Directed graphs (aka Bayesian Networks)
- Undirected graphs (aka Markov Random Fields)

Graphical Models – Why Care?

- Among most important ML developments of the decade
- Graphical models allow combining:
 - Prior knowledge in form of dependencies/independencies
 - Prior knowledge in form of priors over parameters
 - Observed training data
- Principled and ~general methods for
 - Probabilistic inference
 - Learning
- Useful in practice
 - Diagnosis, help systems, text analysis, time series models, ...

Conditional Independence

Definition: X is conditionally independent of Y given Z, if the probability distribution governing X is independent of the value of Y, given the value of Z

$$(\forall i, j, k) P(X = x_i | Y = y_i, Z = z_k) = P(X = x_i | Z = z_k)$$

Which we often write P(X|Y,Z) = P(X|Z)

E.g., P(Thunder|Rain, Lightning) = P(Thunder|Lightning)

Marginal Independence

Definition: X is marginally independent of Y if

$$(\forall i, j) P(X = x_i, Y = y_j) = P(X = x_i) P(Y = y_j)$$

Equivalently, if

$$(\forall i, j) P(X = x_i | Y = y_j) = P(X = x_i)$$

Equivalently, if

$$(\forall i, j) P(Y = y_i | X = x_j) = P(Y = y_i)$$

Bayes Nets define Joint Probability Distribution in terms of this graph, plus parameters

Benefits of Bayes Nets:

- Represent the full joint distribution in fewer parameters, using prior knowledge about dependencies
- · Algorithms for inference and learning

Bayesian Networks <u>Definition</u>

A Bayes network represents the joint probability distribution over a collection of random variables

A Bayes network is a directed acyclic graph and a set of conditional probability distributions (CPD's)

- · Each node denotes a random variable
- · Edges denote dependencies
- For each node X_i its CPD defines $P(X_i \mid Pa(X_i))$
- The joint distribution over all variables is defined to be

$$P(X_1 ... X_n) = \prod_i P(X_i | Pa(X_i))$$

Pa(X) = immediate parents of X in the graph

Bayesian Network

Nodes = random variables

A conditional probability distribution (CPD) is associated with each node N, defining $P(N \mid Parents(N))$

Parents	P(W Pa)	P(¬W Pa)
L, R	0	1.0
L, ¬R	0	1.0
¬L, R	0.2	0.8
¬L, ¬R	0.9	0.1

WindSurf

The joint distribution over all variables:

$$P(X_1 \dots X_n) = \prod_i P(X_i | Pa(X_i))$$

Bayesian Network

(StormClouds)

Lightning

Thunder

What can we say about conditional independencies in a Bayes Net?

One thing is this:

Each node is conditionally independent of its non-descendents, given only its immediate parents.

Parents	P(W Pa)	P(¬W Pa)
L, R	0	1.0
L, ¬R	0	1.0
¬L, R	0.2	0.8
¬L, ¬R	0.9	0.1

WindSurf

Some helpful terminology

Rain

WindSurf

Parents = Pa(X) = immediate parents

Antecedents = parents, parents of parents, ...

Children = immediate children

Descendents = children, children of children, ...

	1	
Parents	P(W Pa)	P(¬W Pa)
L, R	0	1.0
L, ¬R	0	1.0
¬L, R	0.2	0.8
¬L, ¬R	0.9	0.1
W		

Bayesian Networks

 CPD for each node X_i describes P(X_i / Pa(X_i))

Parents	P(W Pa)	P(¬W Pa)
L, R	0	1.0
L, ¬R	0	1.0
¬L, R	0.2	0.8
¬L, ¬R	0.9	0.1
(W)

Chain rule of probability says that in general:

$$P(S, L, R, T, W) = P(S)P(L|S)P(R|S, L)P(T|S, L, R)P(W|S, L, R, T)$$

But in a Bayes net:
$$P(X_1 ... X_n) = \prod_i P(X_i | Pa(X_i))$$

How Many Parameters?

Parents	P(W Pa)	P(¬W Pa)
L, R	0	1.0
L, ¬R	0	1.0
¬L, R	0.2	8.0
¬L, ¬R	0.9	0.1

WindSurf

To define joint distribution in general?

To define joint distribution for this Bayes Net?

Inference in Bayes Nets

Parents	P(W Pa)	P(¬W Pa)
L, R	0	1.0
L, ¬R	0	1.0
¬L, R	0.2	0.8
¬L, ¬R	0.9	0.1

WindSurf

P(S=1, L=0, R=1, T=0, W=1) =

Learning a Bayes Net

Parents	P(W Pa)	P(¬W Pa)
L, R	0	1.0
L, ¬R	0	1.0
¬L, R	0.2	0.8
¬L, ¬R	0.9	0.1

WindSurf

Consider learning when graph structure is given, and data = $\{ <s,l,r,t,w> \}$ What is the MLE solution? MAP?

Algorithm for Constructing Bayes Network

- Choose an ordering over variables, e.g., $X_1, X_2, ... X_n$
- For i=1 to n
 - Add X_i to the network
 - Select parents $Pa(X_i)$ as minimal subset of $X_1 \dots X_{i\text{-}1}$ such that

$$P(X_i|Pa(X_i)) = P(X_i|X_1,...,X_{i-1})$$

Notice this choice of parents assures

$$P(X_1 ... X_n) = \prod_i P(X_i | X_1 ... X_{i-1})$$
 (by chain rule)
$$= \prod_i P(X_i | Pa(X_i))$$
 (by construction)

Example

- · Bird flu and Allegies both cause Nasal problems
- · Nasal problems cause Sneezes and Headaches

assumed conditional independencies?
What is the Bayes Network for Naïve Bayes?

Bayes Network for a Hidden Markov Model

Implies the future is conditionally independent of the past, given the present

$$P(S_{t-2},O_{t-2},S_{t-1},\dots,O_{t+2}) =$$

Conditional Independence, Revisited

- · We said:
 - Each node is conditionally independent of its non-descendents, given its immediate parents.
- Does this rule give us all of the conditional independence relations implied by the Bayes network?
 - No!
 - E.g., X1 and X4 are conditionally indep given {X2, X3}
 - But X1 and X4 not conditionally indep given X3
 - For this, we need to understand D-separation

Easy Network 1: Head to Tail

prove A cond indep of B given C? ie., p(a,b|c) = p(a|c) p(b|c)

let's use p(a,b) as shorthand for p(A=a, B=b)

Easy Network 2: Tail to Tail

prove A cond indep of B given C? ie., p(a,b|c) = p(a|c) p(b|c)

let's use p(a,b) as shorthand for p(A=a, B=b)

Easy Network 3: Head to Head

prove A cond indep of B given C? ie., p(a,b|c) = p(a|c) p(b|c)

let's use p(a,b) as shorthand for p(A=a, B=b)

Easy Network 3: Head to Head

prove A cond indep of B given C? NO!

A C

Summary:

- p(a,b)=p(a)p(b)
- p(a,b|c) NotEqual p(a|c)p(b|c)

Explaining away.

e.g.,

- A=earthquake
- B=breakIn
- C=motionAlarm

X and Y are conditionally independent given Z, **if and only if** X and Y are D-separated by Z.

[Bishop, 8.2.2]

Suppose we have three sets of random variables: X, Y and Z

X and Y are $\underline{\textbf{D-separated}}$ by Z (and therefore conditionally indep, given Z) iff every path from every variable in X to every variable in Y is $\underline{\textbf{blocked}}$

A path from variable A to variable B is **blocked** if it includes a node such that either

1.arrows on the path meet either head-to-tail or tail-to-tail at the node and this node is in \boldsymbol{Z}

2.the arrows meet head-to-head at the node, and neither the node, nor any of its descendants, is in Z

X and Y are <u>**D-separated**</u> by Z (and therefore conditionally indep, given Z) iff every path from every variable in X to every variable in Y is <u>**blocked**</u>

A path from variable A to variable B is **blocked** if it includes a node such that either

1.arrows on the path meet either head-to-tail or tail-to-tail at the node and this node is in Z

2.the arrows meet head-to-head at the node, and neither the node, nor any of its descendants, is in Z

X1 indep of X3 given X2?

X3 indep of X1 given X2?

X4 indep of X1 given X2?

X and Y are <u>D-separated</u> by Z (and therefore conditionally indep, given Z) iff every path from any variable in X to any variable in Y is <u>blocked</u> by Z

A path from variable A to variable B is **blocked** by Z if it includes a node such that either

1.arrows on the path meet either head-to-tail or tail-to-tail at the node and this node is in Z

2.the arrows meet head-to-head at the node, and neither the node, nor any of its descendants, is in ${\sf Z}$

X4 indep of X1 given X3?

X4 indep of X1 given {X3, X2}?

X4 indep of X1 given {}?

X and Y are **D-separated** by Z (and therefore conditionally indep, given Z) iff every path from any variable in X to any variable in Y is **blocked**

A path from variable A to variable B is **blocked** if it includes a node such that either

1.arrows on the path meet either head-to-tail or tail-to-tail at the node and this node is in Z

2.the arrows meet head-to-head at the node, and neither the node, nor any of its descendants, is in \boldsymbol{Z}

a indep of b given c?

a indep of b given f?

Markov Blanket

The Markov blanket of a node \mathbf{x}_i comprises the set of parents, children and co-parents of the node. It has the property that the conditional distribution of \mathbf{x}_i , conditioned on all the remaining variables in the graph, is dependent only on the variables in the Markov blanket.

co-parent = other side of X: 's colliders

from [Bishop, 8.2]

What You Should Know

- Bayes nets are convenient representation for encoding dependencies / conditional independence
- BN = Graph plus parameters of CPD's
 - Defines joint distribution over variables
 - Can calculate everything else from that
 - Though inference may be intractable
- Reading conditional independence relations from the graph
 - Each node is cond indep of non-descendents, given only its parents
 - D-separation
 - 'Explaining away'

See Bayes Net applet: http://www.cs.cmu.edu/~javabayes/Home/applet.html