Today:
• Logistic regression
• Generative/Discriminative classifiers

Readings:
Required:
• Mitchell: “Naïve Bayes and Logistic Regression” (available on class website)
• Bishop: Chapt. 3 through 3.2
Optional
• Ng & Jordan (see class website)

• Consider learning f: X \rightarrow Y, where
 • X is a vector of real-valued features, < X_1 \ldots X_n >
 • Y is boolean
 • assume all X_i are conditionally independent given Y
 • model P(X_i | Y = y_k) as Gaussian N(μ_{ik}, σ_i)
 • model P(Y) as Bernoulli (π)

• What does that imply about the form of P(Y|X)?

\[
P(Y = 1 | X = < X_1, \ldots X_n >) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}
\]
Training Logistic Regression: MCLE

• Choose parameters \(W = \langle w_0, \ldots, w_n \rangle \) to maximize conditional likelihood of training data

\[
\begin{align*}
P(Y = 0|X, W) &= \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)} \\
P(Y = 1|X, W) &= \frac{\exp(w_0 + \sum_i w_i X_i)}{1 + \exp(w_0 + \sum_i w_i X_i)}
\end{align*}
\]

• Training data \(D = \{ (X^1, Y^1), \ldots, (X^L, Y^L) \} \)
• Data likelihood = \(\prod P(X^l, Y^l|W) \)
• Data conditional likelihood = \(\prod P(Y^l|X^l, W) \)

\[
W_{MCLE} = \arg \max_W \prod_l P(Y^l|W, X^l)
\]

Expressing Conditional Log Likelihood

\[
l(W) \equiv \ln \prod_l P(Y^l|X^l, W) = \sum_l \ln P(Y^l|X^l, W)
\]

\[
\begin{align*}
P(Y = 0|X, W) &= \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)} \\
P(Y = 1|X, W) &= \frac{\exp(w_0 + \sum_i w_i X_i)}{1 + \exp(w_0 + \sum_i w_i X_i)}
\end{align*}
\]

\[
l(W) = \sum_l Y^l \ln P(Y^l = 1|X^l, W) + (1 - Y^l) \ln P(Y^l = 0|X^l, W)
\]

\[
= \sum_l Y^l \ln \frac{P(Y^l = 1|X^l, W)}{P(Y^l = 0|X^l, W)} + \ln P(Y^l = 0|X^l, W)
\]

\[
= \sum_l Y^l (w_0 + \sum_i w_i X_i^l) - \ln (1 + \exp(w_0 + \sum_i w_i X_i^l))
\]
Maximizing Conditional Log Likelihood

\[P(Y = 0|X, W) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)} \]

\[P(Y = 1|X, W) = \frac{\exp(w_0 + \sum_i w_i X_i)}{1 + \exp(w_0 + \sum_i w_i X_i)} \]

\[
\ell(W) \equiv \ln \prod_l P(Y^l|X^l, W) \\
= \sum_l Y^l (w_0 + \sum_i^n w_i X_i^l) - \ln(1 + \exp(w_0 + \sum_i^n w_i X_i^l))
\]

Good news: \(\ell(W) \) is convex function of \(W \)
Bad news: no closed-form solution to maximize \(\ell(W) \)

Gradient Descent

\[
\nabla E[\vec{w}] = \begin{bmatrix}
\frac{\partial E}{\partial w_0} & \frac{\partial E}{\partial w_1} & \cdots & \frac{\partial E}{\partial w_n}
\end{bmatrix}
\]

Training rule:
\[
\Delta \vec{w} = -\eta \nabla E[\vec{w}]
\]

i.e.,
\[
\Delta w_i = -\eta \frac{\partial E}{\partial w_i}
\]
Gradient Descent:

Batch gradient: use error \(E_D(w) \) over entire training set \(D \)

Do until satisfied:

1. Compute the gradient \(\nabla E_D(w) = \left[\frac{\partial E_D(w)}{\partial w_0}, \ldots, \frac{\partial E_D(w)}{\partial w_n} \right] \)
2. Update the vector of parameters: \(w \leftarrow w - \eta \nabla E_D(w) \)

Stochastic gradient: use error \(E_d(w) \) over single examples \(d \in D \)

Do until satisfied:

1. Choose (with replacement) a random training example \(d \in D \)
2. Compute the gradient just for \(d \): \(\nabla E_d(w) = \left[\frac{\partial E_d(w)}{\partial w_0}, \ldots, \frac{\partial E_d(w)}{\partial w_n} \right] \)
3. Update the vector of parameters: \(w \leftarrow w - \eta \nabla E_d(w) \)

Stochastic approximates Batch arbitrarily closely as \(\eta \rightarrow 0 \)

Stochastic can be much faster when \(D \) is very large

Intermediate approach: use error over subsets of \(D \)

Maximize Conditional Log Likelihood:

Gradient Ascent

\[
\ell(W) \equiv \ln \prod_l P(Y^l|X^l, W) \\
= \sum_l Y^l (w_0 + \sum_i w_i X_i^l) - \ln (1 + \exp(w_0 + \sum_i w_i X_i^l))
\]

\[
\frac{\partial \ell(W)}{\partial w_i} = \sum_l X_i^l (Y^l - \hat{P}(Y^l = 1|X^l, W))
\]
Maximize Conditional Log Likelihood: Gradient Ascent

\[l(W) = \ln \prod_l P(Y^l | X^l, W) \]
\[= \sum_l Y^l(w_0 + \sum_i w_i X^l_i) - \ln(1 + \exp(w_0 + \sum_i w_i X^l_i)) \]

\[\frac{\partial l(W)}{\partial w_i} = \sum_l X^l_i (Y^l - \hat{P}(Y^l = 1 | X^l, W)) \]

Gradient ascent algorithm: iterate until change < \(\varepsilon \)
For all \(i \), repeat
\[w_i \leftarrow w_i + \eta \sum_l X^l_i (Y^l - \hat{P}(Y^l = 1 | X^l, W)) \]

That’s all for M(C)LE. How about MAP?

- One common approach is to define prior on weights \(W = \{w_0, w_1, \ldots, w_n\} \)
- Helps avoid very large weights and overfitting
- MAP estimate

\[W \leftarrow \arg \max_W \ln \prod_l P(Y^l | X^l, W) \]

- Let's assume Gaussian prior: each \(w_i \sim N(0, \sigma) \)
\[p(w_i) = \frac{1}{Z} \exp \left(-\frac{(w - 0)^2}{2\sigma^2} \right) \]
MLE vs MAP

- Maximum conditional likelihood estimate
 \[W \leftarrow \arg \max_W \ln \prod_l P(Y^{\ell}|X^{\ell}, W) \]
 \[w_i \leftarrow w_i + \eta \sum_l X_l^{\ell}(Y^{\ell} - \bar{P}(Y^{\ell} = 1|X^{\ell}, W)) \]

- MAP estimate with Gaussian prior
 \[p(w_i) = \frac{1}{Z} \exp \left(-\frac{(w - 0)^2}{2\sigma^2} \right) \]
 \[W \leftarrow \arg \max_W \ln[P(W) \prod_l P(Y^{\ell}|X^{\ell}, W)] \]
 \[w_i \leftarrow w_i - \eta \lambda w_i + \eta \sum_l X_l^{\ell}(Y^{\ell} - \bar{P}(Y^{\ell} = 1|X^{\ell}, W)) \]
 called a “regularization” term

The Bottom Line

- Consider learning \(f: X \rightarrow Y \), where
 - \(X \) is a vector of real-valued features, \(<X_1 \ldots X_n> \)
 - \(Y \) is boolean
 - assume all \(X_i \) are conditionally independent given \(Y \)
 - model \(P(X_i | Y = y_k) \) as Gaussian \(N(\mu_i, \sigma_i) \)
 - model \(P(Y) \) as Bernoulli (\(\pi \))

- Then \(P(Y|X) \) is of this form, and we can directly estimate \(W \)
 \[P(Y = 1|X = <X_1, \ldots X_n>) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)} \]

- Furthermore, same holds if the \(X_i \) are boolean
 - trying proving that to yourself
Generative vs. Discriminative Classifiers

Training classifiers involves estimating $f: X \rightarrow Y$, or $P(Y|X)$

Generative classifiers (e.g., Naïve Bayes)
• Assume some functional form for $P(X|Y)$, $P(X)$
• Estimate parameters of $P(X|Y)$, $P(X)$ directly from training data
• Use Bayes rule to calculate $P(Y|X=x_i)$

Discriminative classifiers (e.g., Logistic regression)
• Assume some functional form for $P(Y|X)$
• Estimate parameters of $P(Y|X)$ directly from training data

Use Naïve Bayes or Logistic Regression?

Consider
• Restrictiveness of modeling assumptions

• Rate of convergence toward asymptotic hypothesis
 – How does increasing number of features n influence need for larger training set?
Naïve Bayes vs Logistic Regression

Consider Y boolean, X_i continuous, $X=<X_1 \ldots X_n>$

Number of parameters to estimate:

- **NB:**

$$P(Y = 0|X, W) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

- **LR:**

$$P(Y = 1|X, W) = \frac{\exp(w_0 + \sum_i w_i X_i)}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

Naïve Bayes vs Logistic Regression

Consider Y boolean, X_i continuous, $X=<X_1 \ldots X_n>$

Number of parameters:

- **NB:** $4n +1$
- **LR:** $n+1$

Estimation method:

- **NB parameter estimates are uncoupled**
- **LR parameter estimates are coupled**
G.Naïve Bayes vs. Logistic Regression

[Ng & Jordan, 2002]

Recall two assumptions deriving form of LR from GNBayes:
1. X_i conditionally independent of X_k given Y
2. $P(X_i \mid Y = y_k) = N(\mu_{ik}, \sigma_{ik}), \leftarrow$ not $N(\mu_{ik}, \sigma_{ik})$

Consider three learning methods:
• GNB (assumption 1 only)
• GNB2 (assumption 1 and 2)
• LR

Which method works better if we have infinite training data, and...
• Both (1) and (2) are satisfied
• Neither (1) nor (2) is satisfied
• (1) is satisfied, but not (2)
G. Naïve Bayes vs. Logistic Regression

[Ng & Jordan, 2002]

What if we have only finite training data?

They converge at different rates to their asymptotic (= data) error

Let \(\varepsilon_{A,n} \) refer to expected error of learning algorithm A after n training examples

Let \(d \) be the number of features: \(<X_1 \ldots X_d> \)

\[
\varepsilon_{LR,n} \leq \varepsilon_{LR,\infty} + O\left(\frac{\sqrt{d}}{n}\right)
\]

\[
\varepsilon_{GNB,n} \leq \varepsilon_{GNB,\infty} + O\left(\frac{\log d}{n}\right)
\]

So, GNB requires \(n = O(\log d) \) to converge, but LR requires \(n = O(d) \)

Some experiments from UCI data sets

[Ng & Jordan, 2002]
Naïve Bayes vs. Logistic Regression

The bottom line:

GNB2 and LR both use linear decision surfaces, GNB need not

Given infinite data, LR is better or equal to GNB2 because
training procedure does not make assumptions 1 or 2 (though our
derivation of the form of P(Y|X) did).

But GNB2 converges more quickly to its perhaps-less-accurate
asymptotic error

And GNB is both more biased (assumption1) and less (no
assumption 2) than LR, so either might beat the other

What you should know:

- **Logistic regression**
 - Functional form follows from Naïve Bayes assumptions
 - For Gaussian Naïve Bayes assuming variance $\sigma_{ik} = \sigma_i$
 - For discrete-valued Naïve Bayes too
 - But training procedure picks parameters without making
 conditional independence assumption
 - MLE training: pick W to maximize $P(Y | X, W)$
 - MAP training: pick W to maximize $P(W | X,Y)$
 - ‘regularization’
 - helps reduce overfitting

- **Gradient ascent/descent**
 - General approach when closed-form solutions unavailable

- **Generative vs. Discriminative classifiers**
 - Bias vs. variance tradeoff