Dimensionality Reduction contd ...

Aarti Singh

Machine Learning 10-601 Nov 10, 2011

Slides Courtesy: Tom Mitchell, Eric Xing, Lawrence Saul

Principal Component Analysis (PCA)

Principal Components are the eigenvectors of the matrix of sample correlations XX^T of the data

New set of axes $V = [v_1, v_2, ..., v_D]$

where
$$XX^T = V\Lambda V^T$$

- Geometrically: centering followed by rotation
 - Linear transformation

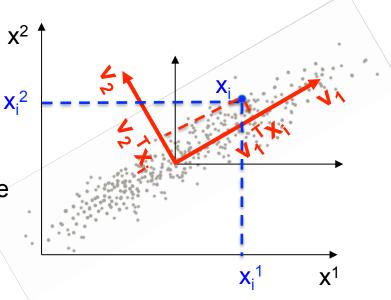
Original representation of data points

$$\mathbf{x}_{i} = [\mathbf{x}_{i}^{1}, \ \mathbf{x}_{i}^{2}, \ ..., \ \mathbf{x}_{i}^{D}]$$

$$x_i^j = e_j^T x_i$$
 where $e_j = [0 ... 0 1 0... 0]$

jth coordinate

Transformed representation of data points $[v_1^Tx_i, v_2^Tx_i, \dots v_D^Tx_i]$



Dimensionality Reduction using PCA

Original Representation [x_i¹, x_i², ..., x_i^D] (D-dimensional vector)

$$x_i = \sum_{j=1}^{D} x_i^j e_j = \sum_{j=1}^{D} (e_j^T x_i) e_j$$
 $(x_i^j)^2 = (e_j^T x_i)^2 = \text{energy/variance of data point i}$ along coordinate j

Transformed representation [v₁^Tx_i, v₂^Tx_i, ... v_D^Tx_i] (D-dimensional vector)

$$\mathbf{x_i} = \sum_{j=1}^{D} (\mathbf{v_j}^\mathsf{T} \mathbf{x_i}) \, \mathbf{v_j}$$

$$(\mathbf{v_j}^\mathsf{T} \mathbf{x_i})^2 = \text{energy/variance of data point i}$$
 along principal component $\mathbf{v_j}$
$$\lambda_j = \sum_{i=1}^{n} (\mathbf{v_j}^\mathsf{T} \mathbf{x_i})^2 = \text{energy/variance of all points along } \mathbf{v_j}$$

Dimensionality reduction [v₁^Tx_i, v₂^Tx_i, ... v_d^Tx_i] (d-dimensional vector)

$$\mathbf{\hat{x}}_{i} = \sum_{j=1}^{d} (\mathbf{v}_{j}^{\mathsf{T}} \mathbf{x}_{i}) \mathbf{v}_{j}$$

Only keep data projections onto principal components which capture enough energy/variance of the data $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_D$

Another interpretation

Maximum Variance Subspace: PCA finds vectors v such that projections on to the vectors capture maximum variance in the data

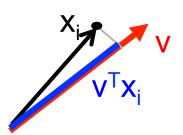
$$\sum_{i=1}^{n} (\mathbf{v}^T \mathbf{x}_i)^2 = \mathbf{v}^T \mathbf{X} \mathbf{X}^T \mathbf{v}$$

Minimum Reconstruction Error: PCA finds vectors v such that projection on to the vectors yields minimum MSE reconstruction

$$\sum_{i=1}^{n} \|\mathbf{x}_i - (\mathbf{v}^T \mathbf{x}_i) \mathbf{v}\|^2$$

One direction approximation

Recall:
$$\mathbf{x}_i = \sum_k (\mathbf{v}_k^T \mathbf{x}_i) \cdot \mathbf{v}_k$$

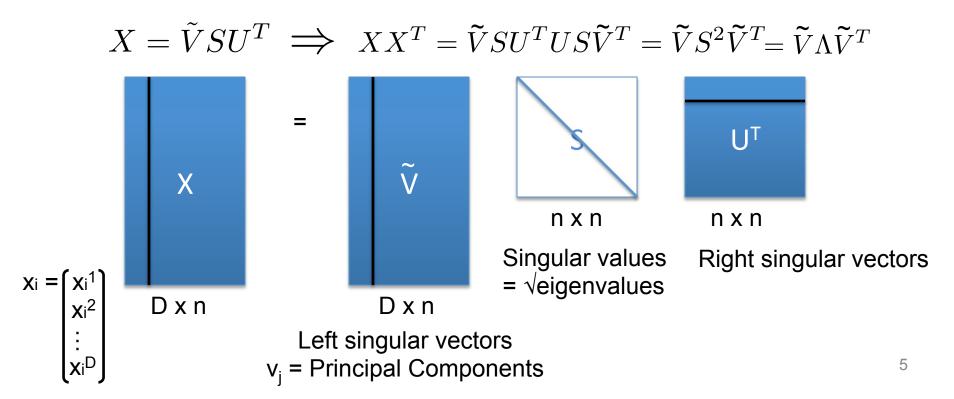


Another way to compute PCs

Principal Components – Eigenvectors of XX^T (D x D matrix)

Problematic for high-dimensional datasets!

Another way to compute PCs: Singular Vector Decomposition (SVD)



Another way to compute PC projections

Singular Vector Decomposition $X = \widetilde{V}SU^T$

$$X = \tilde{V}SU^T$$

Projection of data points on to PCs

$$[v_1^T x_i, v_2^T x_i, \dots v_n^T x_i] = [\sigma_1 u_1(i), \sigma_2 u_2(i), \dots \sigma_n u_n(i)]$$

$$\mathsf{SVD} \implies \tilde{V}^T X = \tilde{V}^T \tilde{V} S U^T = S U^T$$

(since $\widetilde{V}^T\widetilde{V} = I$ eigenvectors are orthornormal)

U and S can be obtained by eigendecomposition of X^TX !

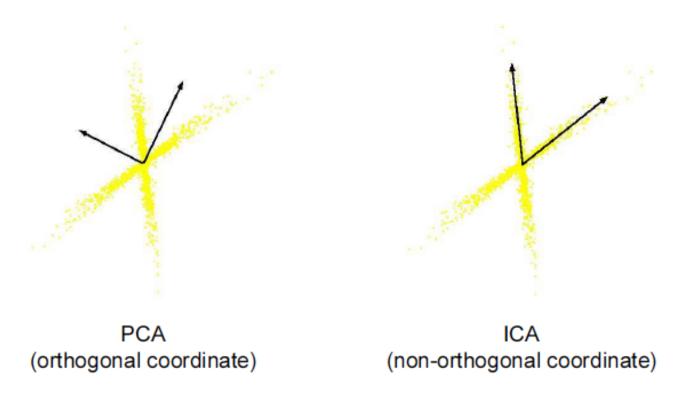
$$X^T X = U S \tilde{V}^T \tilde{V} S U^T = U S^2 U^T$$
 (n x n matrix)

Principal Components are obtained by Eigendecomposition of XX^T (D x D matrix)

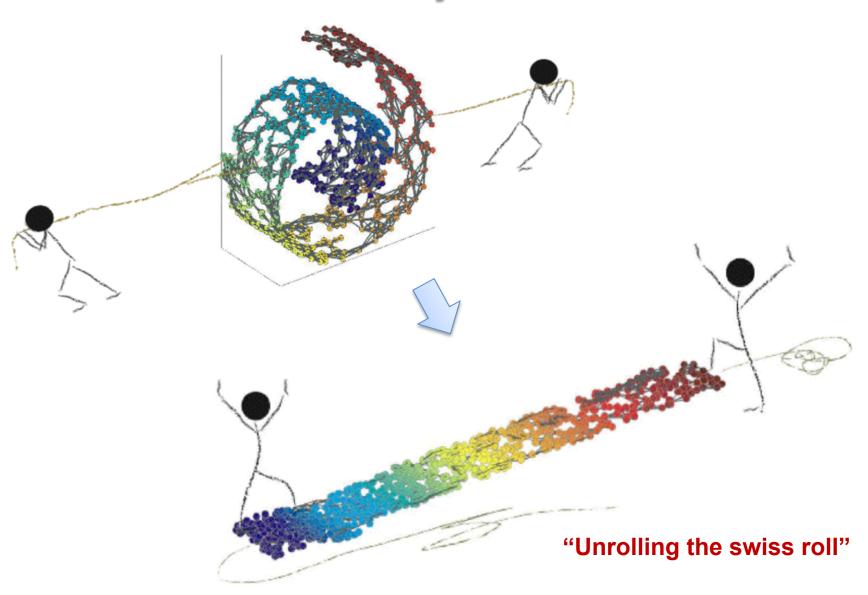
Projection of data points on to PCs can be obtained by Eigendecomposition of X^TX (n x n matrix)

Independent Component Analysis (ICA)

- PCA seeks "orthogonal" directions that capture maximum variance in data, or that minimize squared reconstruction error.
- ICA seeks "statistically independent" directions in the data

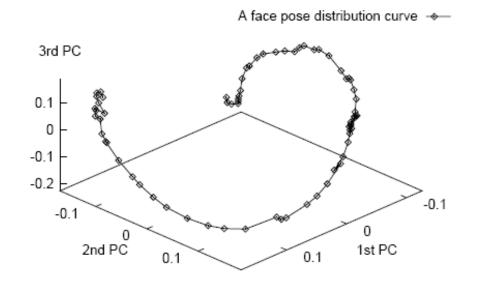


Dimensionality Reduction



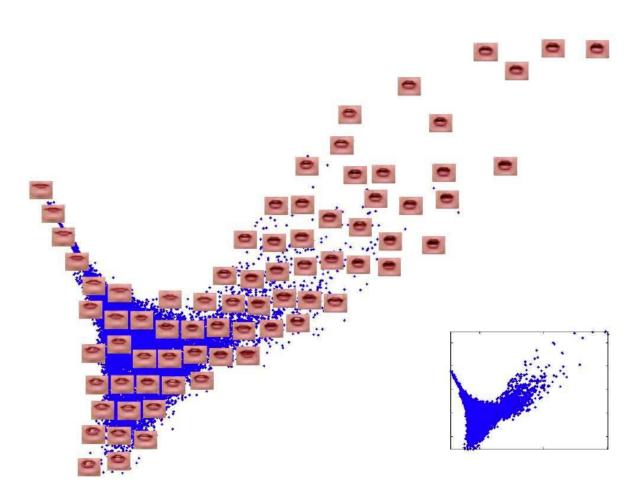
Nonlinear Methods

Data often lies on or near a nonlinear low-dimensional curve aka manifold.



Nonlinear Methods

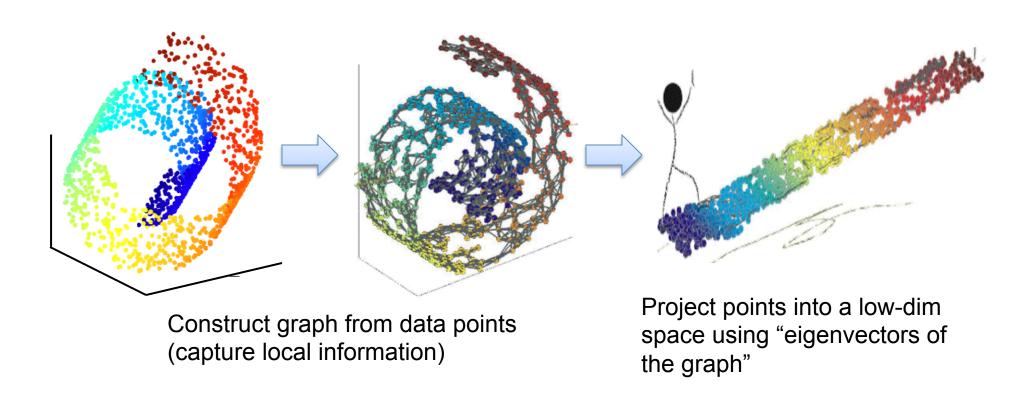
Data often lies on or near a nonlinear low-dimensional curve aka manifold.



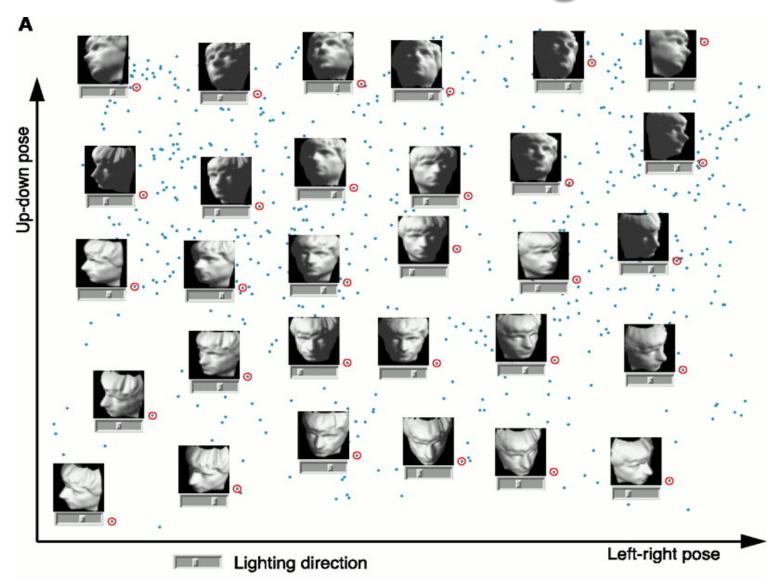
Laplacian Eigenmaps

Linear methods – Lower-dimensional linear projection that preserves distances between **all** points

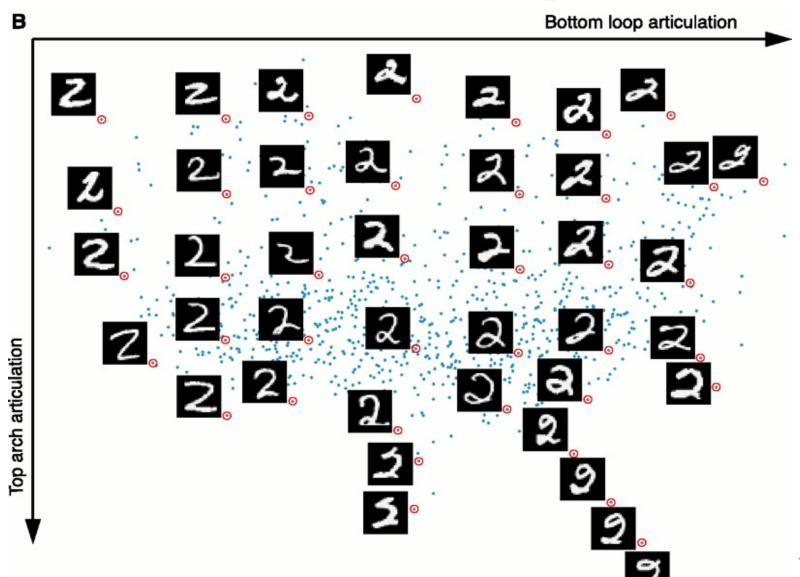
Laplacian Eigenmaps (key idea) – preserve **local** information only



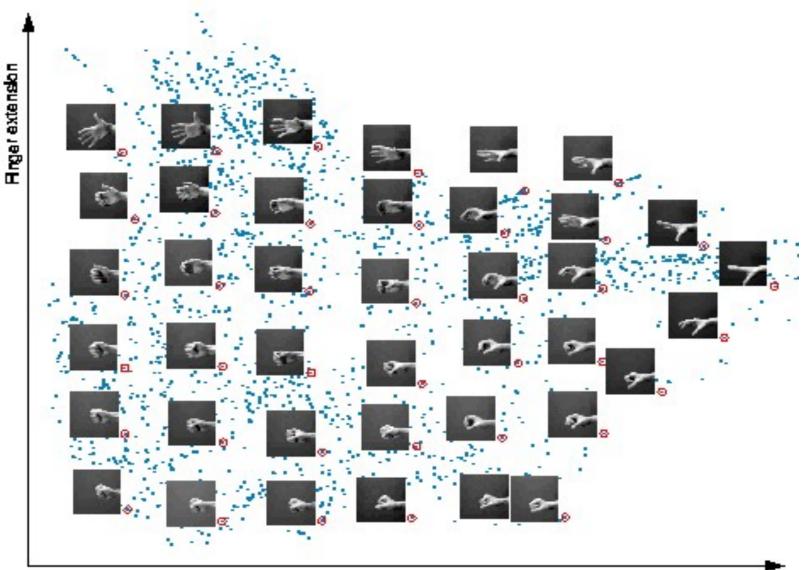
Nonlinear Embedding Results



Nonlinear Embedding Results



Nonlinear Embedding Results

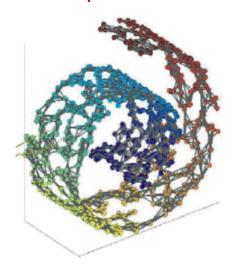


Similarity Graphs: Model local neighborhood relations between data points

G(V,E,W)

V – Vertices (Data points)

E – Edges



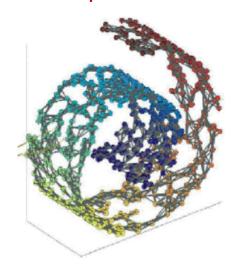
(1)
$$E - Edge if ||xi - xj|| \le \varepsilon$$
 ($\varepsilon - neighborhood graph$)

(2) E – Edge if k-nearest neighbor (k-NN graph)

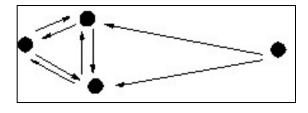
Similarity Graphs: Model local neighborhood relations between data points

(2) E – Edge if k-nearest neighbor (k-NN)

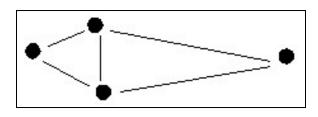
yields directed graph



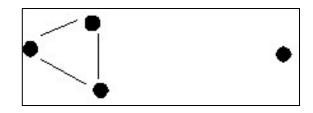
connect A with B if $A \rightarrow B$ OR $A \leftarrow B$ (symmetric kNN graph) connect A with B if $A \rightarrow B$ AND $A \leftarrow B$ (mutual kNN graph)



Directed nearest neighbors



(symmetric) kNN graph



mutual kNN graph

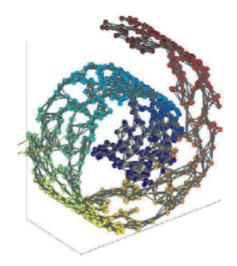
Similarity Graphs: Model local neighborhood relations between data points

G(V,E,W)

V – Vertices (Data points)

E – Edges

W – Weights



(1) W - W_{ij} = 1 if edge present, 0 otherwise

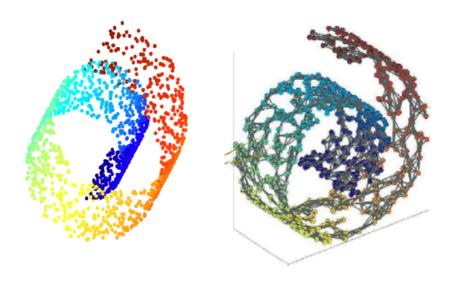
(2) W -
$$W_{ij} = e^{-\frac{\|x_i - x_j\|^2}{2\sigma^2}}$$
 Gaussian kernel similarity function (aka Heat kernel)

Similarity Graphs: Model local neighborhood relations between data points

Choice of σ^2 , ϵ and k:

ε, k - Chosen so that neighborhood on graphs represent neighborhoods on the manifold (no "shortcuts" connect different arms of the swiss roll)

Mostly ad-hoc



Original Representation data point

X_i

(D-dimensional vector)

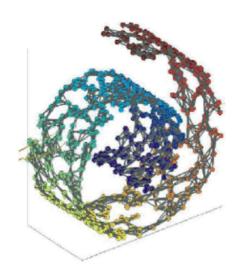
Transformed representation projections

 $(f_1(i), ..., f_d(i))$

(d-dimensional vector)

<u>Basic Idea</u>: Find vector \mathbf{f} such that, if \mathbf{x}_i is close to \mathbf{x}_j in the graph (i.e. \mathbf{W}_{ij} is large), then projections of the points $\mathbf{f}(\mathbf{i})$ and $\mathbf{f}(\mathbf{j})$ are close

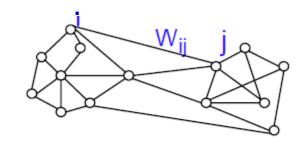
$$\min_{\mathbf{f}} \sum_{ij} W_{ij} (\mathbf{f}_i - \mathbf{f}_j)^2$$



Graph Laplacian (unnormalized version)

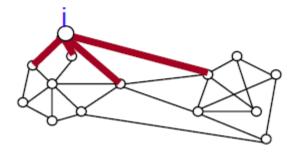
$$L = D - W$$
 (n x n matrix)

W – Weight matrix



D – Degree matrix =
$$diag(d_1,, d_n)$$

 $d_i = \sum_j w_{ij}$ degree of a vertex



Note: If graph is connected,

1 is an eigenvector

with 0 as eigenvalue

$$\mathbf{L1} = \begin{bmatrix} d_1 - \sum_j w_{1j} \\ d_2 - \sum_j w_{2j} \\ \dots \\ d_n - \sum_j w_{nj} \end{bmatrix} = 0$$

 Justification – points connected on the graph stay as close as possible after embedding

$$\min_{\mathbf{f}} \sum_{ij} W_{ij} (\mathbf{f}_i - \mathbf{f}_j)^2 \equiv \min_{\mathbf{f}} \mathbf{f}^T \mathbf{L} \mathbf{f}$$

RHS =
$$f^{T}(D-W) f = f^{T}D f - f^{T}W f = \sum_{i} d_{i}f_{i}^{2} - \sum_{i,j} f_{i}f_{j}w_{ij}$$

$$= \frac{1}{2} \left(\sum_{i} (\sum_{j} w_{ij}) f_{i}^{2} - 2 \sum_{ij} f_{i}f_{j}w_{ij} + \sum_{j} (\sum_{i} w_{ij}) f_{j}^{2} \right)$$

$$= \frac{1}{2} \sum_{ij} w_{ij} (f_{i} - f_{j})^{2} = LHS$$

 Justification – points connected on the graph stay as close as possible after embedding

$$\min_{\mathbf{f}} \sum_{ij} W_{ij} (\mathbf{f}_i - \mathbf{f}_j)^2 \equiv \min_{\mathbf{f}} \mathbf{f}^T \mathbf{L} \mathbf{f} \qquad s.t. \ \mathbf{f}^T \mathbf{f} = 1$$

Similar to PCA with XX^T replaced by L

Lagrangian:
$$\min_{\mathbf{f}} \mathbf{f}^T \mathbf{L} \mathbf{f} - \lambda \mathbf{f}^T \mathbf{f}$$

Wrap constraint into the objective function

$$\partial/\partial \mathbf{f} = \mathbf{0}$$
 $(\mathbf{L} - \lambda \mathbf{I})\mathbf{f} = 0$

$$\mathbf{L}\mathbf{f} = \lambda \mathbf{f}$$

Step 2 – Projection using Graph Laplacian

Graph Laplacian (unnormalized version)

$$L = D - W$$
 (n x n matrix)

Find eigenvectors of the graph Laplacian

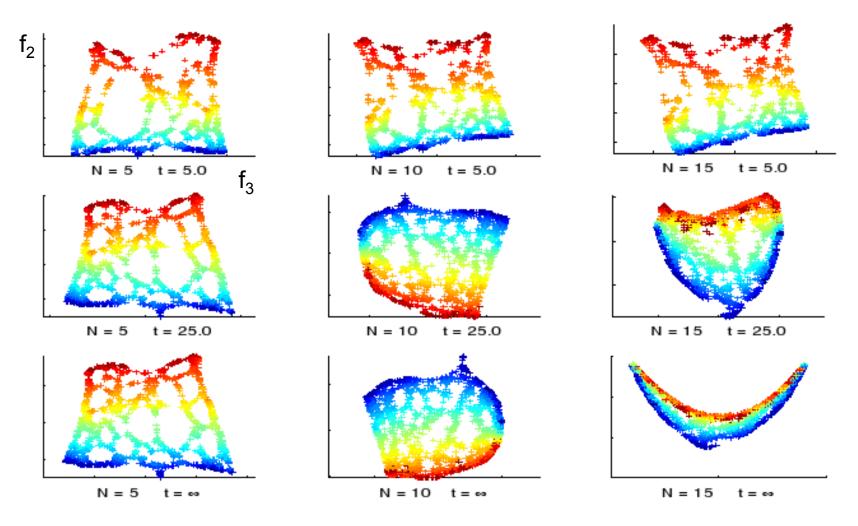
$$\mathbf{Lf} = \lambda \mathbf{f}$$

Ordered eigenvalues
$$0 = \lambda_1 \le \lambda_2 \le \lambda_3 \le ... \le \lambda_n$$

To embed data points in d-dim space, project data points onto eigenvectors associated with $\lambda_1, \lambda_2, ..., \lambda_d$

Original Representation Transformed representation data point projections $x_i \rightarrow (f_1(i), ..., f_d(i))$ (D-dimensional vector) (d-dimensional vector)

Unrolling the swiss roll



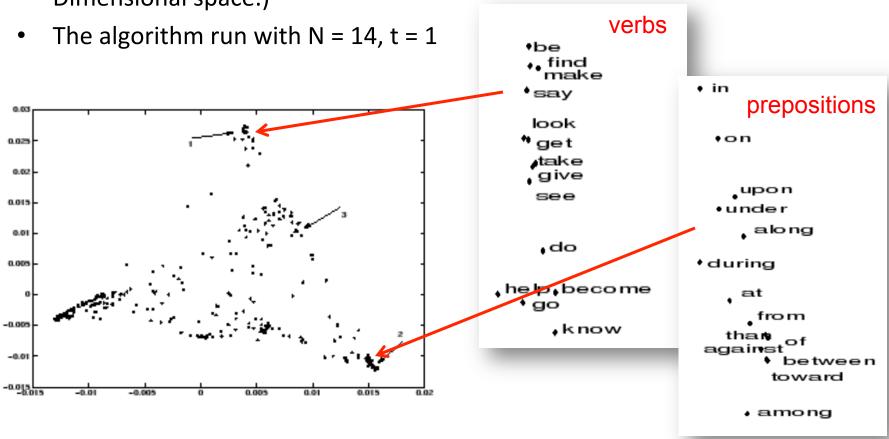
N=number of nearest neighbors, t = the heat kernel parameter (Belkin & Niyogi'03)

Example – Understanding syntactic structure of words

300 most frequent words of Brown corpus

Information about the frequency of its left and right neighbors (600)

Dimensional space.)



PCA vs. Laplacian Eigenmaps

PCA

Linear embedding

based on largest eigenvectors of D x D correlation matrix $\Sigma = XX^T$ between features

eigenvectors give latent features
- to get embedding of points,
project them onto the latent
features

$$x_i \rightarrow [V_1^T x_i, V_2^T x_i, ... V_d^T x_i]$$
D x1

d x1

Laplacian Eigenmaps

Nonlinear embedding

based on smallest eigenvectors of n x n Laplacian matrix L = D - Wbetween data points

eigenvectors directly give embedding of data points

$$x_i \rightarrow [f_1(i), ..., f_d(i)]$$
D x1 d x1

Dimensionality Reduction Methods

- Feature Selection Only a few features are relevant to the learning task
 Score features (mutual information, prediction accuracy, domain knowledge)
 Regularization
- Latent features Some linear/nonlinear combination of features provides a more efficient representation than observed feature

Linear: Low-dimensional linear subspace projection

PCA (Principal Component Analysis),

MDS (Multi Dimensional Scaling),

Factor Analysis, ICA (Independent Component Analysis)

Nonlinear: Low-dimensional nonlinear projection that preserves local information along the manifold

Laplacian Eigenmaps

ISOMAP, Kernel PCA, LLE (Local Linear Embedding),

Many, many more ...

Spectral Clustering

Laplacian Eigenmaps

- Construct graph
- Compute graph Laplacian L = D W
- Embed points using graph Laplacian $\hat{x}_i = [f_1(i), ..., f_d(i)]$

Spectral Clustering

• Run k-means on the embedded points $\{\hat{x}_i\}_{i=1}^n$

K-Means

Algorithm

Input – Desired number of clusters, k

Initialize – the *k* cluster centers (randomly if necessary)

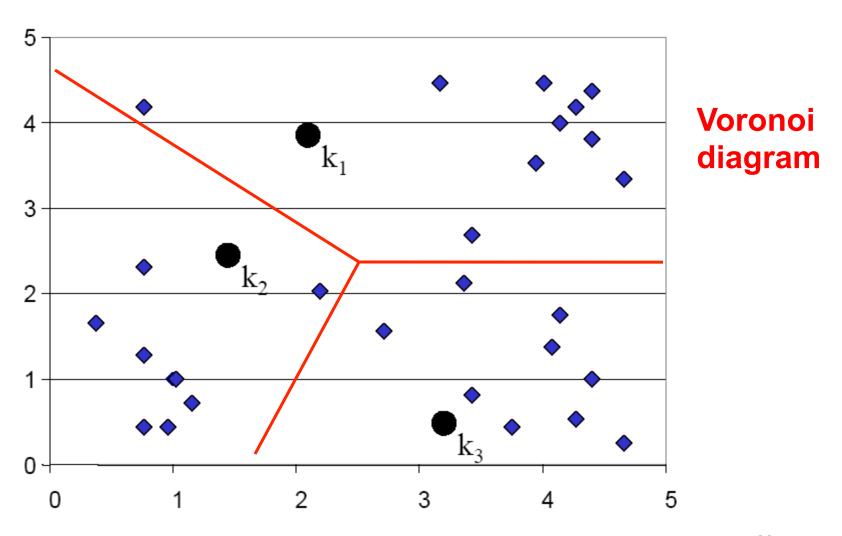
Iterate -

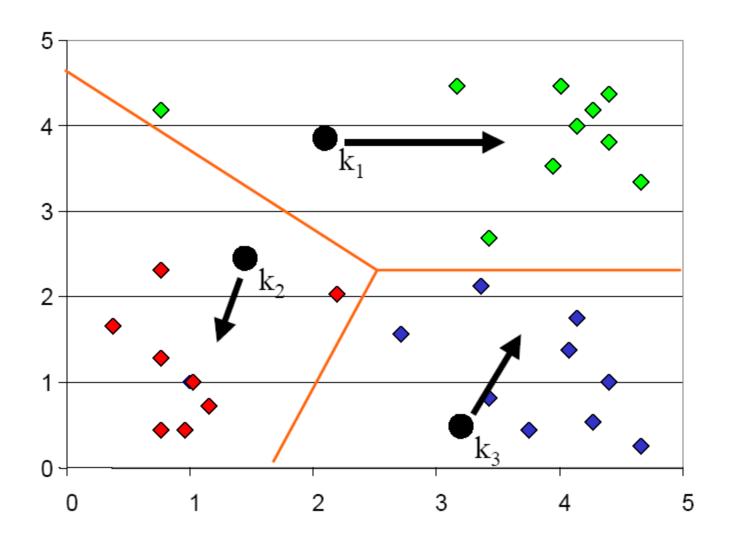
- 1. Assign the objects to the nearest cluster centers
- Re-estimate the k cluster centers (aka the centroid or mean) based on current assignment

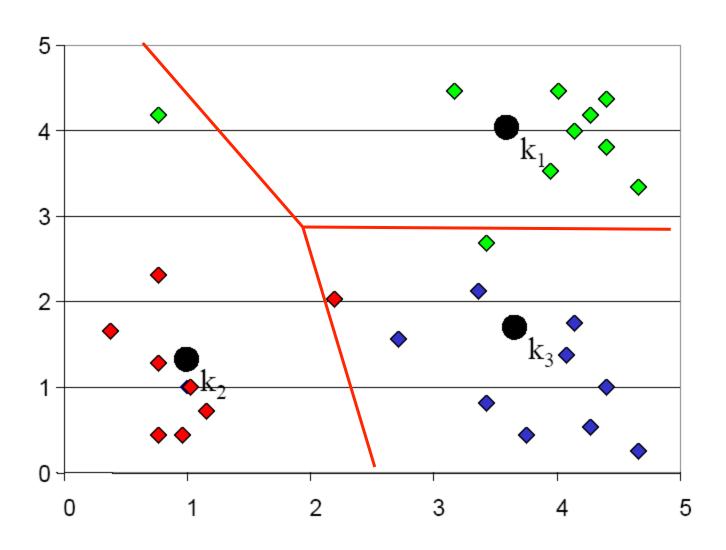
$$\vec{\mu}_k = \frac{1}{\mathcal{C}_k} \sum_{i \in \mathcal{C}_k} \vec{x}_i$$

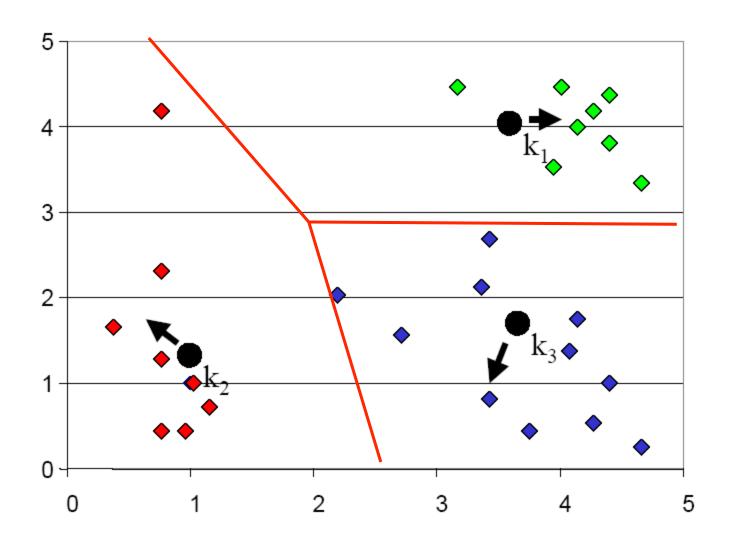
Termination -

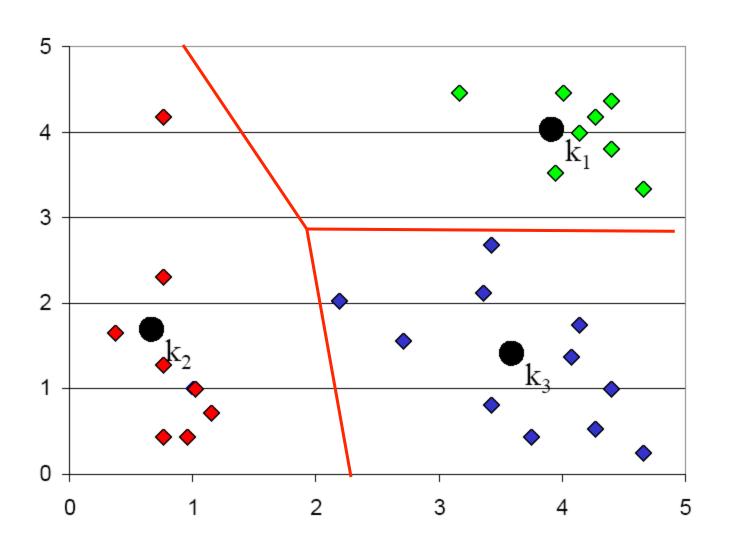
If none of the assignments changed in the last iteration, exit. Otherwise go to 1.



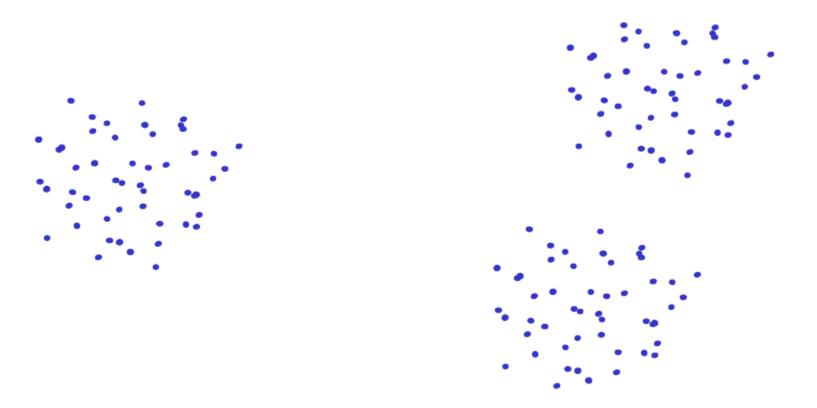




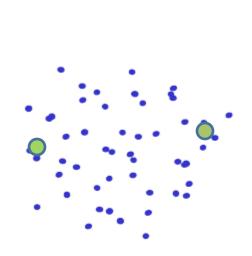


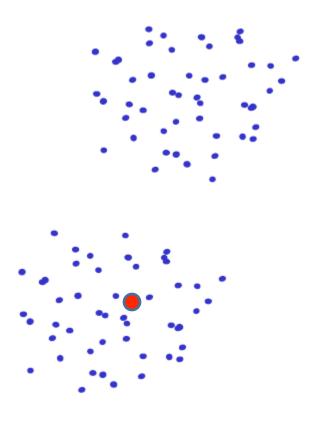


• Results are quite sensitive to seed selection.

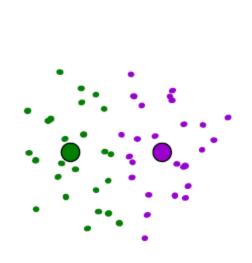


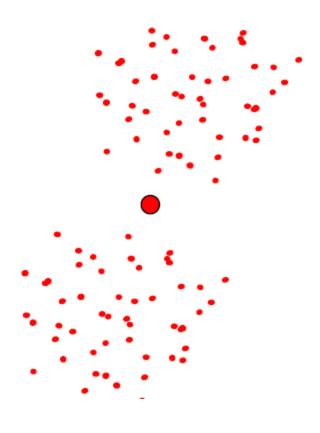
• Results are quite sensitive to seed selection.



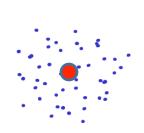


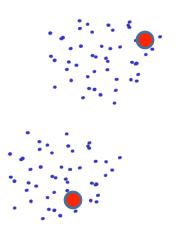
• Results are quite sensitive to seed selection.





- Results can vary based on random seed selection.
- Some seeds can result in poor convergence rate, or convergence to sub-optimal clustering.
 - Try out multiple starting points (very important!!!)
 - Initialize with the results of another method.
 - k-means ++ algorithm of Arthur and Vassilvitskii



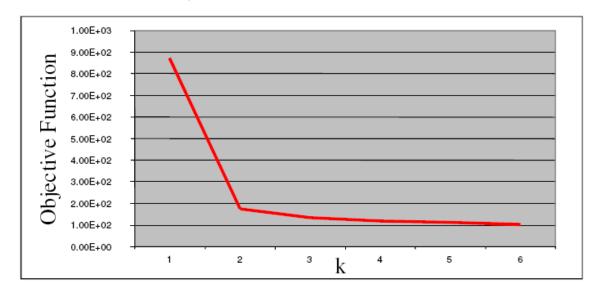


Other Issues

- Number of clusters K
 - Objective function

$$\sum_{j=1}^{m} ||\mu_{C(j)} - x_j||^2$$

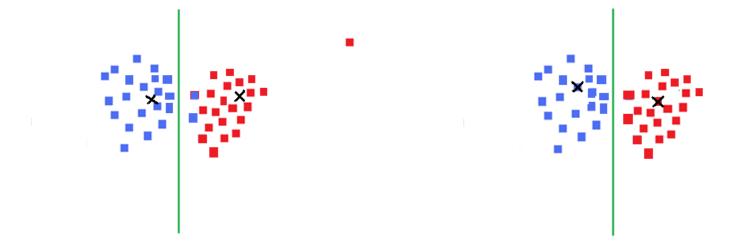
Look for "Knee" in objective function



Can you pick K by minimizing the objective over K? NO!

Other Issues

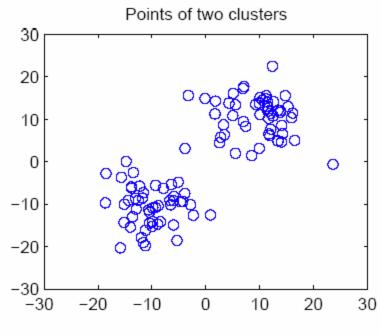
- Sensitive to Outliers
 - use K-medoids



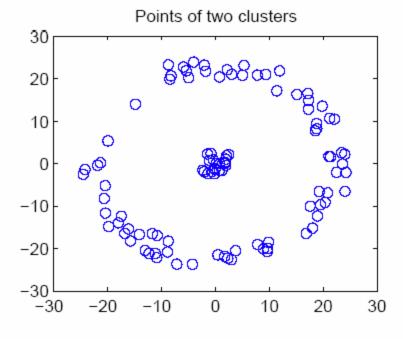
- Shape of clusters
 - Assumes isotopic, convex clusters

k-means vs Spectral clustering

Applying k-means to laplacian eigenvectors allows us to find cluster with non-convex boundaries.



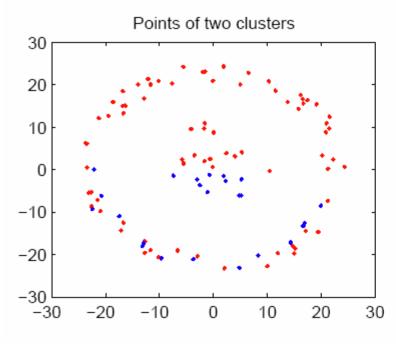
Both perform same

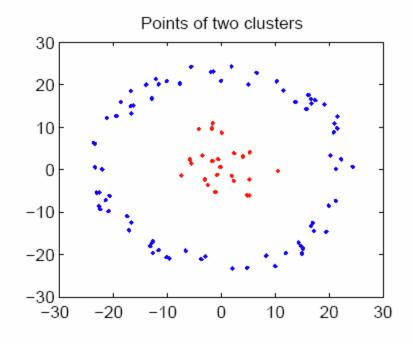


Spectral clustering is superior

k-means vs Spectral clustering

Applying k-means to laplacian eigenvectors allows us to find cluster with non-convex boundaries.





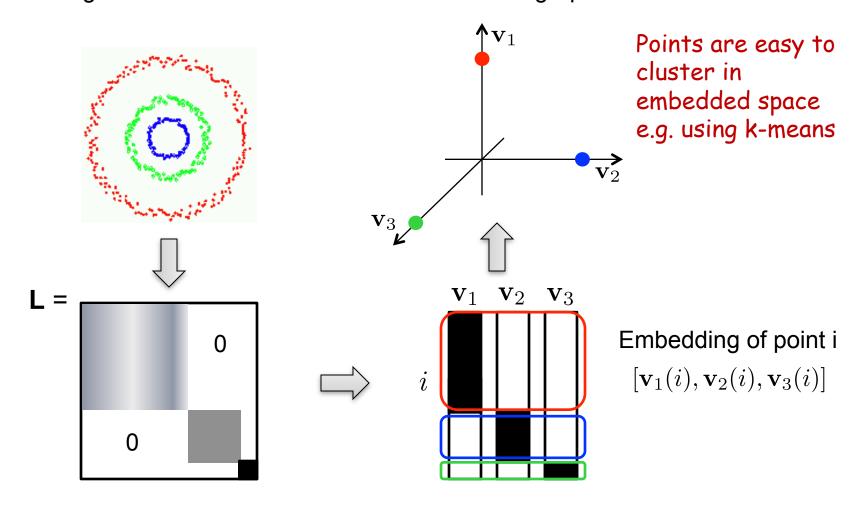
k-means output

Spectral clustering output

Spectral Clustering – Intuition

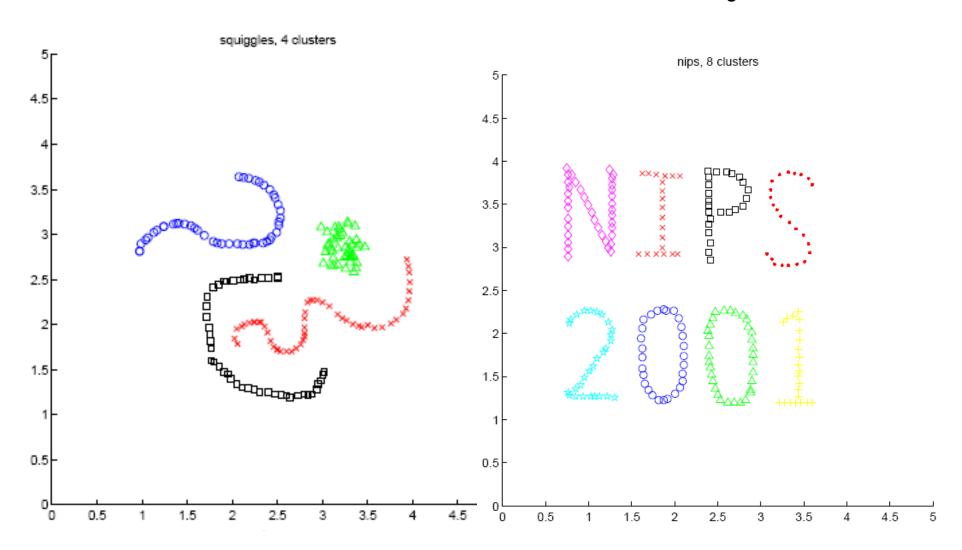
If graph is appropriately constructed, results in disconnected subgraphs

Laplacian eigenvectors are constant on connected subgraphs



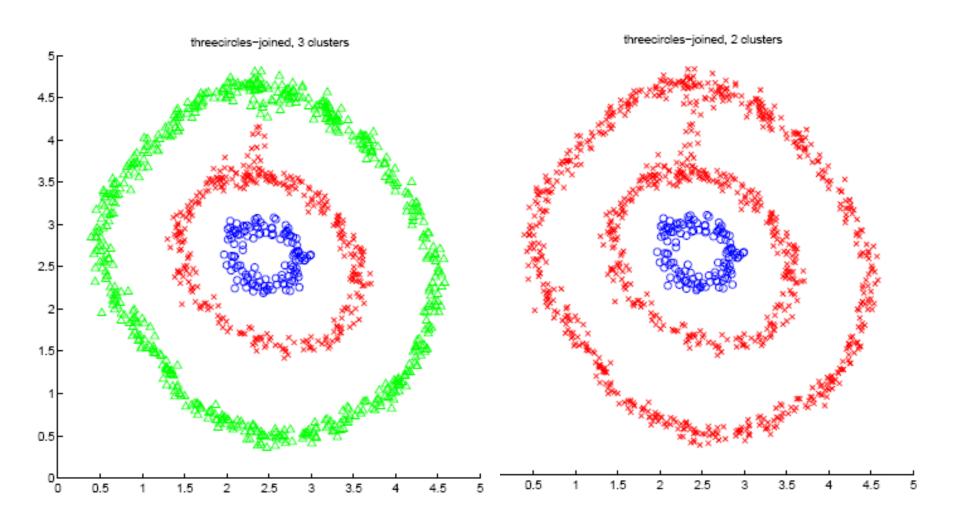
Examples

Ng et al 2001



Examples (Choice of k)

Ng et al 2001



Some Issues

- \triangleright Choice of parameters (ε, k, σ) used in constructing graph
- Choice of number of clusters k Most stable clustering is usually given by the value of k that maximizes the eigengap (difference between consecutive eigenvalues)

$$\Delta_k = \left| \lambda_k - \lambda_{k-1} \right|$$

