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Principal Component Analysis (PCA)

Principal Components are the eigenvectors of the matrix of sample
correlations XXT of the data

New set of axes V = [v,, Vs, ..., Vp] where XXT = VAVT

« Geometrically: centering followed by rotation
— Linear transformation

Original representation of data points
x =[x, x2, ..., xP]

x)=¢'x; wheree;=[0...010...0]
L'J

ji" coordinate '

Transformed representation of data points
[V1Txi, v2Txi, ... vDTxi] x.1 X1

v



Dimensionality Reduction using PCA

Original Representation [x,", x?, ..., x.°] (D-dimensional vector)
D

= Z x) e = Z(eiji) e, (x))? = (eTx;)? = energy/varia.nce qf data point i
g=1 g=1 along coordinate |

Transformed representation [v1'xi, v2'xi, ... vb™xi] (D-dimensional vector)
D

X = Z (ViTxi) v, (v;"x;)? = energy/variance of data point i
g=1 along principal component v,

A= Z(VTX )? = energy/variance of all points along v;
=1

Dimensionality reduction [v1'xi, v2'xi, ... vd'xi] (d-dimensional vector)
d

A
X =2 (W),
j=1
Only keep data projections onto principal components which capture enough
energy/variance of the data A1z A2= ... 2 Ap 3



Another interpretation

Maximum Variance Subspace: PCA finds vectors v such that projections on to the
vectors capture maximum variance in the data

n
> (vix,)? =vIXXTv

1=1

Minimum Reconstruction Error: PCA finds vectors v such that projection on to the
vectors yields minimum MSE reconstruction

n
3% — (vix)v||?
i—1

-y

One direction approximation

Recall: X; = E (VZXZ’)'V]{
k




Another way to compute PCs

Principal Components — Eigenvectors of XXT (D x D matrix)

Problematic for high-dimensional
datasets!

Another way to compute PCs: Singular Vector Decomposition (SVD)

X =VSUT = xxT=vVsuTusvT =VS2VT= VAVT

UT

nxn nxn

Singular values  Right singular vectors
= \eigenvalues

;.

xi =[x’
Xi2 D xn Dxn

; Left singular vectors
xiP v; = Principal Components 0

N




Another way to compute PC projections

Singular Vector Decomposition X = VSU7T

Projection of data points on to PCs

[V1TXi, v2TXi, ... vnTXi] = [04U4(i), O,U(i), ... o,u(i)]
SVD => VIix = vIyvsyuT — suy” (since VTV = T
eigenvectors are
orthornormal)

U and S can be obtained by eigendecomposition of XTX!

XT'xX =Uusvt'vsut =uUs?u” (n x n matrix)

Principal Components are obtained by
Eigendecomposition of XXT (D x D matrix)

Projection of data points on to PCs can be obtained by
Eigendecomposition of XTX (n x n matrix)




Independent Component Analysis (ICA)

 PCA seeks “orthogonal” directions that capture maximum variance
In data, or that minimize squared reconstruction error.

« |CA seeks “statistically independent” directions in the data

-/

PCA ICA
(orthogonal coordinate) (non-orthogonal coordinate)



Dimensionality Reduction

“Unrolling the swiss roll”



Nonlinear Methods

Data often lies on or near a nonlinear low-dimensional curve aka manifold.
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A face pose distribution curve -¢—
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Nonlinear Methods

Data often lies on or near a nonlinear low-dimensional curve aka manifold.

10



Laplacian Eigenmaps

Linear methods — Lower-dimensional linear projection that preserves distances
between all points

Laplacian Eigenmaps (key idea) — preserve local information only

Project points into a low-dim
space using “eigenvectors of
the graph”

Construct graph from data points
(capture local information)



Up-down pose

Nonlinear Embedding Results

Lighting direction Left-right pose
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Nonlinear Embedding Results

L

Bottom loop articulation
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Nonlinear Embedding Results
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Step 1 - Graph Construction

Similarity Graphs: Model local neighborhood relations between data points
G(V,E,W)
V — Vertices (Data points)

E — Edges

(1) E—Edgeif|[xi—xj|| =€ (¢ — neighborhood graph)

(2) E — Edge if k-nearest neighbor (k-NN graph)



Step 1 - Graph Construction

Similarity Graphs: Model local neighborhood relations between data points

(2) E — Edge if k-nearest neighbor (k-NN)

yields directed graph

connectAwithBif A—B OR A<—B
connectAwithBif A— BANDA B

.#r\.
\./

@
T

Directed nearest neighbors

(symmetric) KNN graph

(symmetric KNN graph)
(mutual kNN graph)

_—®

e

mutual KNN graph




Step 1 - Graph Construction

Similarity Graphs: Model local neighborhood relations between data points
G(V,E,W)
V — Vertices (Data points)

E — Edges

W — Weights

(1) W-W; =1 if edge present, 0 otherwise

| —a 1|2
)W- W;; = e 202 Gaussian kernel similarity function
(aka Heat kernel)



Step 1 - Graph Construction

Similarity Graphs: Model local neighborhood relations between data points

Choice of 62, e and k :

€, k - Chosen so that neighborhood on graphs represent neighborhoods on the
manifold (no “shortcuts” connect different arms of the swiss roll)

Mostly ad-hoc




Step 2 - Projection using Graph

Original Representation Transformed representation
data point projections

X - (F4 (i), .., Ta(0))
(D-dimensional vector) (d-dimensional vector)

Basic Idea: Find vector f such that, if x; is close to x; in the graph (i.e. Wj is

large), then projections of the points f(i) and f(j) are close
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Step 2 - Projection using Graph

e Graph Laplacian (unnormalized version)
L=D-W (n x n matrix)

W — Weight matrix

D — Degree matrix = diag(d,, ...., d,)
d; = ) _; w;; degree of a vertex

Note: If graph is connected, i di — > jwij
1 is an eigenvector L1l = dp — 2.5 w; — 0
with 0 as eigenvalue

] dn—zjwn] ]



Step 2 - Projection using Graph

e Justification — points connected on the graph stay as close as
possible after embedding

m|n ZW’LJ(f )2 = mfin fTLf
]

RHS = f7(D-W) f = fIDf-fTWf = Zd,-f,-z—Zﬁ-@w,-j
1
:i(ZZ =23 o+ 30w )
:_ZWU f; = LHS




Step 2 - Projection using Graph

Justification — points connected on the graph stay as close as
possible after embedding

min ZW’&](f’L — fj)z = min fTLf S.t. fo =1
f i f
Similar to PCA with XX' replaced by L
Wrap constraint into the

Lagrangian: mfin fILf — A fTf objective function

8/0f = 0 (L — ADf =0 Lf = \f




Step 2 - Projection using Graph Laplacian

e Graph Laplacian (unnormalized version)
L=D-W (n x n matrix)

Find eigenvectors of the graph Laplacian | Lf = \f

Ordered eigenvalues O = A, S A, S A3s ... S A

To embed data points in d-dim space, project data points onto

eigenvectors associated with Ay, A,, ..., Ay
Original Representation Transformed representation
data point projections
X - (f(i), ..., F4(i))

(D-dimensional vector) (d-dimensional vector)



Unrolling the swiss roll
b ke 7T
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N=number of nearest neighbors, t = the heat kernel parameter (Belkin & Niyogi'03)
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Example — Understanding syntactic

structure of words

300 most frequent words of Brown corpus

Information about the frequency of its left and right neighbors (600

Dimensional space.)
The algorithm runwithN=14,t=1
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PCA vs. Laplacian Eigenmaps

PCA

Linear embedding

based on largest eigenvectors of
D x D correlation matrix = = XXT
between features

eigenvectors give latent features
- to get embedding of points,
project them onto the latent
features
X. = [vi'xi, v2Txi, ... vd'xi]
D x1 d x1

Laplacian Eigenmaps
Nonlinear embedding

based on smallest eigenvectors of
n x n Laplacian matrixL=D-W
between data points

eigenvectors directly give
embedding of data points

x; = [f,(i), ..., f4(i)]
D x1 d x1



Dimensionality Reduction Methods

Feature Selection - Only a few features are relevant to the learning task

Score features (mutual information, prediction accuracy, domain knowledge)
Regularization

Latent features — Some linear/nonlinear combination of features provides a
more efficient representation than observed feature
Linear: Low-dimensional linear subspace projection

PCA (Principal Component Analysis),
MDS (Multi Dimensional Scaling),

Factor Analysis, ICA (Independent Component Analysis)

Nonlinear: Low-dimensional nonlinear projection that preserves local
information along the manifold

Laplacian Eigenmaps
ISOMAP, Kernel PCA, LLE (Local Linear Embedding),
Many, many more ...
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Spectral Clustering

Laplacian Eigenmaps

« Construct graph

 Compute graph LaplacianL=D - W

 Embed points using graph Laplacian )Qi = [f,(i), ..., T4(i)]

Spectral Clustering

* Run k-means on the embedded points {)’ﬂ}”i=1



K-Means
Algorithm

Input — Desired number of clusters, k
Initialize — the k cluster centers (randomly if necessary)

Ilterate —

1. Assign the objects to the nearest cluster centers

2. Re-estimate the k cluster centers (aka the centroid or mean) based on
current assignment

Termination —

If none of the assignments changed in the last iteration, exit. Otherwise
goto 1.

29



K-means Clustering: Step 1
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K-means Clustering: Step 2

5

4
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K-means Clustering: Step 3
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K-means Clustering: Step 4
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K-means Clustering: Step 5

5

4

o ¢
T
\ oL
T
o\
¢ @
o @

& \ ¢ .k’
TS EREN
@

OO \ o ¢

34



Seed Choice

Results are quite sensitive to seed selection.
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Seed Choice

Results are quite sensitive to seed selection.
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Seed Choice

Results are quite sensitive to seed selection.
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Seed Choice

* Results can vary based on random seed selection.

 Some seeds can result in poor convergence rate, or
convergence to sub-optimal clustering.
— Try out multiple starting points (very important!!!)
— Initialize with the results of another method.
— k-means ++ algorithm of Arthur and Vassilvitskii

38



Other Issues

e Number of clusters K
— Objective function m

2
ey — 25l
=1

— Look for “Knee” in objective function

1.00E+03

9.00E+02

8.00E+02

7.00E+02 \
6.00E+02 \
5.00E+02 \
4.00E+02

3.00E+02 \\

2.00E+02 X

Objective Function

1.00E+02

0.00E+00

1 2 ' 3 k 4 5 6

— Can you pick K by minimizing the objective over K? NO!



Other Issues

e Sensitive to Outliers
— use K-medoids

AR

e Shape of clusters
— Assumes isotopic, convex clusters

e S



k-means vs Spectral clustering

Applying k-means to laplacian eigenvectors allows us to find cluster with
non-convex boundaries.

30

Points of two clusters

207

Both perform same

Points of two clusters
30

10

_30 1 1 1 1 1
-30 -20 -10 0 10 20 30

Spectral clustering is superior



k-means vs Spectral clustering

Applying k-means to laplacian eigenvectors allows us to find cluster with
non-convex boundaries.

Points of two clusters

Points of two clusters

30 30
20 . e o . " 20+ . e e = 0. "
®» b :t'o * » . .::.0
TR .2, s 10 " .1, s
-10} .. : ~10} .. g
J . S .
F 4
=20t ot e '.. s -201 Yot e ‘.. %
_30 1 1 1 1 1 _30 1 1 1 1 1
-30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30

k-means output

Spectral clustering output



Spectral Clustering — Intuition

If graph is appropriately constructed, results in disconnected subgraphs

Laplacian eigenvectors are constant on connected subgraphs

Iv1

V3

Vi

Vo

V3

Points are easy to
cluster in
embedded space
e.g. using k-means

Embedding of point i
[v1(2), va(2), va(4)]



Ng et al 2001

Examples

squiggles, 4 clusters
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Examples (Choice of k)

Ng et al 2001

threecircles—joined, 2 clusters threscircles—joined, 2 clusters




Some Issues

» Choice of parameters (¢,k,0) used in constructing graph
» Choice of number of clusters k

Most stable clustering is usually given by the value of k that
maximizes the eigengap (difference between consecutive

eigenvalues)
Ak - V% - Azf-l‘

Eigenvalues
. * * ¥

Histogram of the sample 0sl * ¥
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