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High-Dimensional data

High-Dimensions = Lot of Features

Document classification

Features per document =

thousands of words/unigrams

millions of bigrams, contextual

information

Surveys - Netflix
480189 users x 17770 movies

movie 1 | movie 2 | movie 3 | movie 4 | movie 5 | movie 6

Tom 5 ? ? 1 3 ?
George 7 ? 3 1 2 5
Susan 4 3 1 ? 5 1
Beth 4 3 ? 2 4 2




High-Dimensional data

High-Dimensions = Lot of Features

Discovering gene networks
10,000 genes x 1000 drugs
x several species

MEG Brain Imaging
120 locations x 500 time points
x 20 objects
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Curse of Dimensionality

* Why are more features bad?

— Redundant features (not all words are useful to classify a document)

more noise added than signal

— Hard to interpret and visualize

— Hard to store and process data (computationally challenging)

— Complexity of decision rule tends to grow with # features. Hard to learn
complex rules as VC dimension increases (statistically challenging)



Dimensionality Reduction

* Feature Selection — Only a few features are relevant to the learning task
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e Latent features — Some linear/nonlinear combination of features provides a
more efficient representation than observed features




Feature Selection

 Approach 1: Score each feature and extract a subset

Common scoring methods:

« Training or cross-validated accuracy of single-feature
classifiers f: X, 2 Y

» Estimated mutual information between X; and Y :

. _ P(X; =k Y =y)
I(X;,Y) = P(X; =k Y =y)log— : -
z ;zy: 1 P(X; =k)P(Y =vy)

2 statistic to measure independence between X, and ¥

« Domain specific criteria

— Text: Score “stop” words (“the”, “of”, ...) as zero
— fMRI: Score voxel by T-test for activation versus rest condition



Feature Selection

 Approach 1: Score each feature and extract a subset

Common subset selection methods:

* One step: Choose d highest scoring features
* lterative:

— Choose single highest scoring feature X,
— Rescore all features, conditioned on the set of
already-selected features
. E.g., Score(X;| X,) = 1(X,Y |X,)
« E.g, Score(X;| X,) = Accuracy(predicting Y from X. and X,)

— Repeat, calculating new scores on each iteration,
conditioning on set of selected features



Feature Selection: Text Classification

Approximately 105 words in English [Rogati&Yang, 2002]
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Figure 2: Top 3 feature selection methods for Reuters-21578 (Macro F1)

|IG=information gain, chi= %2 , DF=doc frequency,



Impact of Feature Selection on Classification of
fMRI Data

[Pereira et al., 2003]

Accuracy classifying
category of word read

by subject
I
#voxels mean | subjects

2338 3208  332B  424B  474B 4968 77 368

50 0.735 | 0.783 0.817 055  0.783  0.75 0.8 0.65 0.75
100 0.742 | 0.767 0.8 0.533  0.817  0.85  0.783 0.6 0.783
200 0.737 0.783 0.783 0.517 0.817  0.883 0.75 0.583 0.783
300 0.75 0.8 0.817 0.567 0.833 0.883 0.75 0.583 0.767
400 0.742 0.8 (0.783 0.583 .85 0.833 0.75 ).583 0.75
800 0.735 |  0.833 0.817  0.567  0.833  0.833 0.7 0.55 0.75
1600 0.698 0.8 0.817 0.45 (.783 0.833  0.633 0.5 0.75
all (~2500)  0.638 0.767 0.767 0.25 0.75 0.833 0.567 0.433 0.733

Table 1: Average accuracy across all pairs of categories, restricting the procedure to
use a certain number of voxels for each subject. The highlighted line corresponds to the
hest mean accuracy., obtained using 300 voxels.

Each feature X; is a voxel, scored by error in regression to predict X; from Y



Feature Selection

* Approach 2: Regularization (MAP)

Integrate feature selection into learning objective by penalizing number of

features with non-zero weights
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Latent Feature Extraction

Combinations of observed features provide more efficient representation, and
capture underlying relations that govern the data

E.g. Ego, personality and intelligence are hidden attributes that characterize
human behavior instead of survey questions

Topics (sports, science, news, etc.) instead of documents

Often may not have physical meaning

e Linear

Principal Component Analysis (PCA)

Factor Analysis

Independent Component Analysis (ICA)

* Nonlinear
Laplacian Eigenmaps
ISOMAP

Local Linear Embedding (LLE) \/ 11




Principal Component Analysis (PCA)

Only one relevant feature Both features become relevant

Can we transform the features so that we only need to preserve one latent
feature? Find linear projection so that projected data is uncorrelated.

12



Principal Component Analysis (PCA)

I8

D=2
1d=1

Assumption: Data lies on or near a low d-dimensional linear subspace.
Axes of this subspace are an effective representation of the data

|dentifying the axes is known as Principal Components Analysis, and
can be obtained by Eigen or Singular value decomposition

13



Principal Component Analysis (PCA)

Principal Components (PC) are orthogonal
directions that capture most of the variance

in the data

18t PC — direction of greatest variability in
data

Projection of data points along 15t PC
discriminate the data most along any one
direction

Take a data point xi (D-dimensional vector)

Projection of xi onto the 15t PC v is v'xi

14



Principal Component Analysis (PCA)

X.

Principal Components (PC) are orthogonal
directions that capture most of the variance
in the data

18t PC — direction of greatest variability in
data

2"d PC — Next orthogonal (uncorrelated)
direction of greatest variability

(remove all variability in first direction, then

find next direction of greatest variability)

And soon ...

15



Principal Component Analysis (PCA)

Let v1, v2, ..., vd denote the principal components

Orthogonal and unitnorm ~ vTv,=0 i#]

viiv, =1

Find vector that maximizes sample variance of projection D=2

1d=1
1, 7 o T T Assume data are centered
; Zl(v Xi) =v XXV Data points X =[ x1 x2 ... Xn]
1=

mélx vIXXTy st. viv=1

Lagrangian: maxy vIXXTy — AvTy  VVrap constraints into the
objective function

9/0v =0 (XXT — A)v = 0 = (XXT)v = Av

16



Principal Component Analysis (PCA)

(XXDYyv = Av

Therefore, v is the eigenvector of sample correlation/
covariance matrix XXT

Sample variance of projection =vIXXTyv = \wliv =)

Thus, the eigenvalue A denotes the amount of variability captured along
that dimension (aka amount of energy along that dimension).

Eigenvalues A1 2 22 A3 = ... Ap

The 15t Principal component v1 is the eigenvector of the sample covariance
matrix XX associated with the largest eigenvalue A1

The 2n Principal component vz is the eigenvector of the sample covariance
matrix XXT associated with the second largest eigenvalue A2

And soon ... 17



Computing the PCs

Eigenvectors are solutions of the following equation:

(XX1Y)yv = Av (XX —ADDv=0
Non-zero solution v # 0 possible only if

det(XX1T —AI) =0 Characteristic Equation

This is a D" order equation in A, can have at most D distinct solutions (roots
of the characteristic equation)

Once eigenvalues are computed, solve for eigenvectors (Principal Components)
using
(XXT —XDv =0

For symmetric matrices, eigenvectors for distinct eigenvalues are orthogonal.

18



Principal Component Analysis (PCA)

Principal Components are the eigenvectors of the matrix of sample
correlations XXT of the data

New set of axes [vq, V,, ..., Vp]

« Geometrically: centering followed by rotation
— Linear transformation

Original features of data points
x; =[x, x2, ..., xP] are correlated

Transformed features
[viTxi, v2Txi, ... vD'xi] are uncorrelated.

v

x.1 X1
D

D
T
X; = E CikVE = (Vi X;) Vi
k=1 k=1 19



Dimensionality Reduction using PCA

The eigenvalue A denotes the amount of variability captured along
that dimension. n= Lty (vT'x,)2
=1

Zero eigenvalues indicate no variability along those directions =>
data lies exactly on a linear subspace

Eigenvalues A1 2 A 2= A3 = ... Ap

Only keep data projections onto principal components with non-

zero eigenvalues, say v1, ..., vawhere d = rank (XXT)
Original Representation Transformed representation
data point projections

Xi = [xi!, xi?, ....xiP] [ViTxi, v2Txi, ... vdaTxi]

(D-dimensional vector) (d-dimensional vector)

20



Dimensionality Reduction using PCA

In high-dimensional problem, data usually lies near a linear subspace, as
noise introduces small variability

Only keep data projections onto principal components with large eigenvalues

Can ignore the components of lesser significance.

25 -

20 -

-
a1
]

-
o
]

Variance (%)

&)

S N N D

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

You might lose some information, but if the eigenvalues are small, you don'’t lose
much 21



Example of PCA

0.0 0.2 0.4 0.6 0.8 1.0

eigenvalues normalized by trace

Eigenvectors and eigenvalues of
covariance matrix for n=1600

inputs in d=3 dimensions.




Example: faces

Eigenfaces
from 7562
Images:

top left image
Is linear

combination
of rest.

Sirovich & Kirby (1987)
Turk & Pentland (1991)




Properties of PCA

- Strengths
—Eigenvector method
—No tuning parameters
—Non-iterative '
—No local optima

- Weaknesses

—Limited to second order statistics
—Limited to linear projections




Another interpretation

Maximum Variance Subspace: PCA finds vectors v such that projections on to the
vectors capture maximum variance in the data

n
> (vix,)? =vIXXTv

1=1

S|+

Minimum Reconstruction Error: PCA finds vectors v such that projection on to the
vectors yields minimum MSE reconstruction

n

1
- 3% — (vix)v||?

I

One direction approximation

Recall: X; = E (VZXZ’)'V]{
k

25



PCA vs. Neural Networks

PCA Neural Networks

* Unsupervised dimensionality Supervised dimensionality
reduction reduction

» Linear representation that gives Nonlinear representation that gives

best squared error fit best squared error fit
* No local minima  Local minima
* Orthogonal vectors * Auto-encoding NN with linear units

may not yield orthogonal vectors

—> X

7 KO
SN
AN\ 26




PCA Example

face —>

face, = 2, c, eigenface,

LD S
O O
\W 4

\

Thanks to Christopher DeCoro
see http://www.cs.princeton.edu/~cdecoro/eigenfaces/



Reconstructing a face from
the first N components
(eigenfaces)

Adding 1 additional
PCA component at
each step

Adding 8 additional
PCA components
at each step

In this next image, we show a similar picture, but with each
additional face representing an additional 8 principle components.
You can see that it takes a rather large number of images before
the picture looks totally correct.

» ; 3 .




Learned Hidden Unit Weights

left strt rght up

Typical input images

http://www.cs.cmu.edu/~tom /faces.html



