Machine Learning 10-601

Tom M. Mitchell
Machine Learning Department
Carnegie Mellon University

September 13, 2011

Today: Readings:

« What is machine learning? » “The Discipline of ML”
+ Decision tree learning * Mitchell, Chapter 3

» Course logistics » Bishop, Chapter 14.4

Machine Learning:

Study of algorithms that
 improve their performance P
« at some task T

 with experience E

well-defined learning task: <P, T,E>




Learning to Predict Emergency C-Sections

[Sims et al., 2000]

Data:
Patient103 yimazq = Patientl03 ., = Patientl03 fimen
Age: 23 Age: 23 Age:23 9714 patient records,
FirstPregnancy: no FirstPregnancy: no FirstPregnancy: no .
Anemia: o Anermia: no Anemia: no each with 215 features
Diabetes: no Diabetes: YES Diabstes: no
P Birth: no PreviousP ith: no PreviousPrematuieBirth: no
Utrasound: ? Ultrasound: abnormal Ultrasound: ?
Elective C-Section: ? Elective C-Section: no Elective C-Section: no

Emeigency C-Saction: ? Emeigency C-Saction: ? Emergency C-Section: Yes

One of 18 learned rules:

If No previous vaginal delivery, and
Abnormal 2nd Trimester Ultrasound, and
Malpresentation at admission

Then Probability of Emergency C-Section is 0.6

Over training data: 26/41 = .63,
Over test data: 12/20 = .60

Learning to detect objects in images

(Prof. H. Schneiderman)

Example training images
for each orientation




Reading
a noun

" (vs verb)
2005]

[Rustandi et al.,
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Global
Toma
Home

company

Our growing specialty chemicals sector adds balance and

operations span the globe, with activities in more than 100
profit to the core energy business

countries.
and the Mediterrancan Rim complement already solid

Our expanding refining and marketing operations in Asia
positions in Europe, Afiica, and the U.S

fast-growing ol and gas reserves. Our strategic emphasis
on natural gas provides a strong position in a rapidly

expanding market

Our energy exploration, production, and distribution

At TOTAL, we draw our greatest strength from our
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Machine Learning - Practice
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Speech Recognition

One of 18 learned rules:

It No previous vaginal delivery, and
Abnormal 2nd Trimester Ultrasounc d, and h
Malpresentation at admission -‘S ]
Then Probability of Emergency C-Section is 0.6

Over tratning dsta: 26/41 = 65, Object recognition

Over test data: 12/20 = .60

Mining Databases
* Supervised learning

» Bayesian networks

Control learning
Text analysis + Hidden Markov models

Peter H. van Oppen ,

e I — - Unsupervised clustering

since its acquisition by Interpoint in 1994 and a director of ADIC since 1986. Until its

acquisition by Crane Co. in October 1996, lfi¥an Oppen served as [ NG

Prior to 1985, Mr. van . .
ppen worked as a at Price Waterhouss LLP and at Bain & Company * Reinforcement learni ng
in Boston and London. He has additional experience in medical electronics and venture
capital. Wi ¥an Oppen also serves as a — and Spacelabs
Medical, Inc.. He holds a B.A. from Whitman College and an M.B.A. from Harvard °
Business School, where he was a Baker Scholar.

Machine Learning - Theory

Other theories for

PAC Learning Theory * Reinforcement skill learning
(supervised concept learning) * Semi-supervised learning
« Active student querying
# examples (m) .
representational
complexity (H)
error rate (g) ... also relating:
failure » # of mistakes during learning
probability (5) « learner’ s query strategy
1 * convergence rate
m 2> ;(ln |H| + In(1/4)) « asymptotic performance

« bias, variance




Economics Computer science Animal learning

and o ;
o (Cognitive science,
Organizational Psychology.
Behavior . ‘ Neuroscience)
<]

' Machine learning
'I Adaptive Control

Theory

/>

Evolution

Machine Learning in Computer Science

« Machine learning already the preferred approach to
— Speech recognition, Natural language processing
— Computer vision
— Medical outcomes analysis
— Robot control

All software apps.

» This ML niche is growing (why?)




Machine Learning in Computer Science

» Machine learning already the preferred approach to
— Speech recognition, Natural language processing
— Computer vision
— Medical outcomes analysis
— Robot control

All software apps.

« This ML niche is growing
— Improved machine learning algorithms
— Increased data capture, networking, new sensors
— Software too complex to write by hand
— Demand for self-customization to user, environment

Function Approximation and
Decision tree learning




Function approximation

Problem Setting:

» Set of possible instances X

» Unknown target function f: XY

» Set of function hypotheses H={ h | h: XY }

superscript: ith training example ‘
Input:

« Training examples {<x(",y(>} of unknown target function f

Output:
» Hypothesis i € H that best approximates target function f

A Decision tree for
F: <Outlook, Humidity, Wind, Temp> = PlayTennis?

Sunny Overcast Rain

]

High Normal Strong Weak
No Yes No Yes

Each internal node: test one discrete-valued attribute X;
Each branch from a node: selects one value for X;

Each leaf node: predict Y (or P(Y|X € leaf))




Decision Tree Learning

Problem Setting:
» Set of possible instances X
— each instance x in X is a feature vector
— e.g., <Humidity=Ilow, Wind=weak, Outlook=rain, Temp=hot>
» Unknown target function f: X>Y
— Yis discrete valued
« Set of function hypotheses H={ h | h: X>Y }

— each hypothesis / is a decision tree
— trees sorts x to leaf, which assigns y ’ !

Decision Tree Learning

Problem Setting:
» Set of possible instances X
— each instance x in X is a feature vector
X=<X; X, ... X,>
» Unknown target function f: X>Y
— Yis discrete valued
» Set of function hypotheses H={ h | h: XY }

— each hypothesis / is a decision tree

Input:

» Training examples {<x(?,y>} of unknown target function f
Output:

» Hypothesis i € H that best approximates target function f




Decision Trees o

Suppose X = <X,,... X,>
where X; are boolean variables

How would you represent Y = X, X;? Y =X, v X;

How would you represent X, X; v X;X,(-X))

A Tree to Predict C-Section Risk

Learned from medical records of 1000 women

Negative examples are C-sections

[833+,167-] .83+ .17-

Fetal_Presentation = 1: [822+,116-] .88+ .12-

| Previous_Csection = 0: [767+,81-] .90+ .10-

| | Primiparous = 0: [399+,13-] .97+ .03-

| | Primiparous = 1: [368+,68-] .84+ .16-

| | | Fetal_Distress = 0: [334+,47-] .88+ .12-
| | | | Birth_Weight < 3349: [201+,10.6-] .95+ .
| | | | Birth_Weight >= 3349: [133+,36.4-] .78+
| | | Fetal_Distress = 1: [34+,21-] .62+ .38-

| Previous_Csection = 1: [565+,35-] .61+ .39-
Fetal_Presentation = 2: [3+,29-] .11+ .89-
Fetal_Presentation = 3: [8+,22-] .27+ .73-




Top-Down Induction of Decision Trees
[ID3, C4.5, Quinlan]

node = Root

Main loop:

1. A < the “best” decision attribute for next node
2. Assign A as decision attribute for node

3. For each value of A, create new descendant of
node

4. Sort training examples to leaf nodes

5. If training examples perfectly classified, Then
STOP, Else iterate over new leaf nodes

Which attribute is best?
[29+,35-] Al1=" [29+,35-] A2="

t f t f

[21+,5-] [8+,30-] [18+,33-] [11+,2-]

Sample Entropy

Entropy(S)

00 L | OAIS L | l.b

e S is a sample of training examples
® p is the proportion of positive examples in S
® p, is the proportion of negative examples in S

e Entropy measures the impurity of S

H(S) = —pslogype — pelogy pe

10



Entropy

# of possible

Entropy H(X) of a randomW values for X

e
H(X)=-Y P(X =1i)logs P(X = i)
=1

H(X) is the expected number of bits needed to encode a
randomly drawn value of X (under most efficient code)

Why? Information theory:

* Most efficient code assigns -log,P(X=i) bits to encode

the message X=i

» So, expected number of bits to code one random X is:

3" P(X = i)(~ logy P(X = )
=1

Entropy

Entropy H(X) of a random variable X

H(X)= - Z P(X = i)logy P(X = i)
=1

Specific conditional entropy H(X/Y=v) of X given Y=v :

HX|Y =v) = - fj P(X =iy =v)logy P(X = i[Y =)
=1

Conditional entropy H(X/Y) of X given Y :

HXY)= Y P =u0)HX]Y =)
vEvalues(Y')

Mututal information (aka Information Gain) of X and Y :

I(X,Y) = H(X) - H(X|Y)=H(Y) - HY|X)

11



Information Gain is the mutual information between
input attribute A and target variable Y

Information Gain is the expected reduction in entropy
of target variable Y for data sample S, due to sorting
on variable A

Gain(S, A) = Is(A,Y) = Hs(Y) — Hg(Y|A)

[29+,35-] A1=? [29+,35-] A2="?

t f ! f

[21+,5-] [8+,30-] [18+,33-] [114,2-]

Training Examples

Day Outlook Temperature Humidity Wind PlayTen:
D1 Sunny Hot High Weak No
D2  Sunny Hot High  Strong No
D3 Overcast Hot High  Weak Yes
D4  Rain Mild High  Weak Yes
D5  Rain Cool Normal Weak Yes
D6  Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8  Sunny Mild High Weak No
D9  Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High  Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High  Strong No

12



Selecting the Next Attribute

Which attribute is the best classifier?

S:[9+,5-] S:[9+,5-]
E =0.940 E=0.940
Humidity Wind
High Normal Weak Strong
[3+4-] [6+1-] [6+2-] [3+,3]
E=0985 E=0.592 E=0.811 E=1.00
Gain (S, Humidity ) Gain (S, Wind)

940 - (7/14).985 - (7/14).592 940 - (8/14).811 - (6/14)1.0
51 048

{D1,D2, .., D14}

[9+.5-]
Outlook
Sunny Overcast Rain\
{D1.D2.D8,D9,.D11} {D3,D7.D12,D13} {D4,D5,D6,D10,D14}
[2+,3-] [4+.0-] [3+2-]

Which attribute should be tested here?

Ssunny = (D1,D2,D8,.D9,D11}
Gain (Sgypny » Humidity) = 970 - (3/5)0.0 - (2/5)0.0 = .970
Gain (Ssypny » Temperature) = 970 - (2/5)0.0 — (2/5)1.0 - (1/5)0.0 = .570
Gain (Ssypny, Wind) = 970 - (2/5)1.0 = (3/5).918 = .019

13



Decision Tree Learning Applet

Which Tree Should We Output?

 ID3 performs heuristic
J search through space of
/{\ decision trees

2N * |t stops at smallest
}@( /(L}R\ acceptable tree. Why?

- . Occam’ s razor: prefer the
D N simplest hypothesis that

fits the data

14



Why Prefer Short Hypotheses? (Occam’ s Razor)

Arguments in favor:

Arguments opposed:

Why Prefer Short Hypotheses? (Occam’ s Razor)

Argument in favor:
* Fewer short hypotheses than long ones

—> a short hypothesis that fits the data is less likely to be
a statistical coincidence

-> highly probable that a sufficiently complex hypothesis
will fit the data

Argument opposed:

» Also fewer hypotheses with prime number of nodes
and attributes beginning with “Z”

« What's so special about “short” hypotheses?

15



Overfitting in Decision Trees

Consider adding noisy training example #15:
Sunny, Hot, Normal, Strong, PlayTennis = No

What effect on earlier tree?

Sunny Overcast Rain

]

High Normal Strong Weak

No Yes No Yes

Overfitting

Consider a hypothesis / and its
- Error rate over training data: erroryqin(h)
« True error rate over all data: erroriu.(h)

We say 4 overfits the training data if

errorime(h) > erroryqin(h)

Amount of overfitting =
erroriue(h) — erroryqin(h)

16



Overfitting in Decision Tree Learning

09 T T T T T T T T T

0.85

0.8

0.75

0.7

Accuracy

0.65 H

0.6 On training data ——
On test data ---—-

0.55

05 L L L s L L L L L
0 10 20 30 40 50 60 70 80 920 100

Size of tree (number of nodes)

Avoiding Overfitting

How can we avoid overfitting?

e stop growing when data split not statistically
significant

e grow full tree, then post-prune

17



Reduced-Error Pruning

Split data into training and validation set
Create tree that classifies training set correctly
Do until further pruning is harmful:

1. Evaluate impact on validation set of pruning
each possible node (plus those below it)

2. Greedily remove the one that most improves
validation set accuracy

e produces smallest version of most accurate
subtree

e What if data is limited?

Effect of Reduced-Error Pruning

0.9

085

0.8

0.75

=3
9

Accuracy

0.65 H

0.6 On training data ——
On test data ----

0.55 On test data (during pruning) -----

05 L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100

Size of tree (number of nodes)
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Continuous Valued Attributes

Create a discrete attribute to test continuous
e T'emperature = 82.5

o (Temperature > 72.3) =t, f

Temperature: 40 48 60 72 80 90
PlayTennis: No No Yes Yes Yes No

Attributes with Many Values

Problem:
o If attribute has many values, Gain will select it

e Imagine using Date = Jun_3.1996 as attribute

One approach: use GainRatio instead

' ' Gain(S, A)
GainRatio(S, A) = ’
ainia ZO( ) ) Split[nformatiOTL(S,A)

: : c |Si|, ]Sl
SplitIn formation(S,A) = — X log
(5, 4)= =& g1 o8 g

where S; is subset of S for which A has value v;

19



What you should know:

» Well posed function approximation problems:
— Instance space, X
— Sample of labeled training data { <x®, y®>}
— Hypothesis space, H={f: X>Y}

« Learning is a search/optimization problem over H
— Various objective functions
* minimize training error (0-1 loss)
» among hypotheses that minimize training error, select smallest (?)

» Decision tree learning
— Greedy top-down learning of decision trees (ID3, C4.5, ...)
— Overfitting and tree/rule post-pruning
— Extensions...

Questions to think about (1)

» ID3 and C4.5 are heuristic algorithms that
search through the space of decision trees.
Why not just do an exhaustive search?

20



Questions to think about (2)

» Consider target function f: <x1,x2> > vy,
where x1 and x2 are real-valued, y is
boolean. What is the set of decision surfaces
describable with decision trees that use each
attribute at most once?

Questions to think about (3)

* Why use Information Gain to select attributes
in decision trees? What other criteria seem
reasonable, and what are the tradeoffs in
making this choice?

21



Course logistics

Machine Learning 10-601

course page: www.cs.cmu.edu/~aarti/Class/10601

Lecturers See webpage for
+ Aarti Singh » Office hours
« Tom Mitchell + Syllabus details
, * Recitation sessions
TA's » Grading policy
» Will Bishop * Honesty policy
+ Shing-Hon Lau « Late homework policy
+ Mladen Kolar . ..

Course assistant

* Sharon Cavlovich
(GHC 8215)

22



Highlights of Course Logistics

Recitation sessions: Late homework:

» Optional, very helpful « full credit when due

* 5 or 6pm, wednesdays, * half credit next 48 hrs
(depending on room) « zero credit after that

* start THIS WEEK. (watch .« e will delete your lowest
email: possibly 6pm wed.) HW score

* must turn in n-1 of the n
homeworks, even if late

Grading:

* 30% homeworks (~5)

* 25% midterm (October 27)
- 25% final exam (date tba) ~ ° You mustbe —plan now
* 20% course project

Being present at exams:

Aarti Singh
www.cs.cmu.edu/~aarti

Learning in high-dimensional systems using corrupt,
partial, compressed and active measurements

Robust and efficient Clustering in
high-dimensions

Learning large graph structures using few,
selective measurements

Identifying weak patterns in networks
- detecting nascent epidemics using non-local
connectivity (open position: undergrad)

23



Will Bishop

Online, semi-supervised learning for brain-computer
interface: Can we develop classifiers of brain signals
that “autonomously” improve their performance over
time?

Feature Extraction

Acquisition of
Neural Signals

[N
| 1

Visual
Feedback

High Level Signal to Interface Device Q

Classification of
User Intent

Shing-hon Lau
How do we conduct rigorous

experiments in computer security?
Can we use the way a person types

as a digital fingerprint?

Retumn
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“Welcome back,
Bob Smith.”

o
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Mladen Kolar

How to learn when the number of parameters is much larger than
the number of sample points?
*How do we exploit unknown underlying structure?

Can we learn the structure?
*Sparsity
*Manifolds

‘Low rank matrices

5th year Ph.D. student at Machine Learning Dept. @ CMU. Advisor: Eric P. Xing.
Homepage:

Tom Mitchell

How can we build never-ending learners?

Case study: never-ending language learner
(NELL) runs 24x7 to learn to read the web

Recently-Learned Facts =witter NELL KB assertions vs. time
500,000

tony hall is a U.S. politician 400,000
christmas lights is a perception event 350,000 71 9 p

. . . .87
lung carcinomas is a disease 300,000 - 8

. . 50"
wild cat beach is a beach 250,000 /
mike epps is a commedian 200,000 A
ernest_hemingway contributed to the creative work a farewell to arms 15000 90/ periodic human
. . oe 0 . supervision begins
andrew stanton directed the movie finding nemo 100,000 P 9
jeffords is a politician who holds the office of senators 50,000
time warner controls cnn ? - - - - o
Jan 2010 March July Nov

the location of davis is california

© = precision of extracted KB

see http://rtw.ml.cmu.edu
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