10601 Machine Learning

October 12, 2011 Mladen Kolar

Outline

• Bias – Variance tradeoff

• Linear regression

Bayes networks

BIAS – VARIANCE TRADEOFF

Applet for least squares

http://mste.illinois.edu/users/exner/java.f/leastsquares/

Decomposition of error

Assume
$$Y = f(x) + \epsilon$$

Generalization error

$$\operatorname{err}(x_0) = E[(Y - \hat{f}(X))^2 | X = x_0]$$

$$\operatorname{err}(x_0) = \sigma^2 + (E_{\mathcal{D}}[\hat{f}(x_0) - f(x_0)])^2 + Var_{\mathcal{D}}(\hat{f}(x_0))$$

$$\text{variance}$$
 unavoidable error

Bias

Suppose that we have multiple datasets with n samples

On each data set we learn $\hat{f}(x)$

On average (over different datasets) we learn $E[\hat{f}(x)]$

Bias measures the difference between what you expect to learn and the truth

decreases with complexity of the model

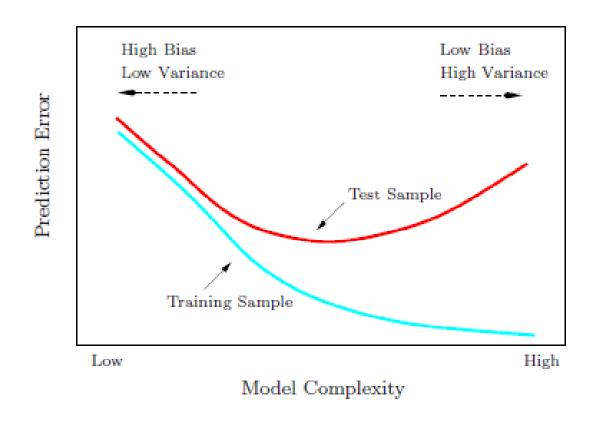
Variance

Measures the difference between what you expect to learn and what you learn on a particular dataset.

Measures how sensitive learner is to a specific dataset

Decreases as we have simpler models

Model complexity



LINEAR REGRESSION

Linear regression model

$$y = f(x) + \epsilon, \quad \epsilon \sim N(0, \sigma^2)$$
$$p(y|x) = N(f(x), \sigma^2)$$
$$f(x) = w_0 + \sum_i w_i \phi_i(x)$$

Maximum conditional likelihood estimation

$$\hat{w} = \arg\min_{w} \sum_{l} (y_l - \sum_{i} w_i \phi_i(x_l))^2$$

Matrix of transformed features

$$\Phi = \begin{pmatrix} \phi_1[X_{11}, \dots, X_{1d}] & \dots & \phi_m[X_{11}, \dots, X_{1d}] \\ \dots & \dots & \dots \\ \phi_1[X_{n1}, \dots, X_{nd}] & \dots & \phi_m[X_{n1}, \dots, X_{nd}] \end{pmatrix}$$

$$\Phi = \begin{pmatrix} X_{11} & \dots & X_{1d} \\ \dots & \dots & \dots \\ X_{n1} & \dots & X_{nd} \end{pmatrix} = X$$

Linear regression (matrix equation)

$$y = \begin{pmatrix} y_1 \\ \dots \\ y_n \end{pmatrix} = \begin{pmatrix} f_w(\ < X_{11}, \ \dots, \ X_{1d} >) \ + \ \epsilon_1 \\ \dots \\ f_w(\ < X_{n1}, \ \dots, \ X_{nd} >) \ + \ \epsilon_n \end{pmatrix} = \begin{pmatrix} \sum_{j=1}^d w_j \ X_{1j} \ + \ \epsilon_1 \\ \dots \\ \sum_{j=1}^d w_j \ X_{nj} \ + \ \epsilon_n \end{pmatrix} = X \ w \ + \ \epsilon$$

$$\hat{w} = \arg\min_{w} (y - Xw)'(y - Xw)$$

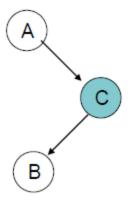
Final solution

$$\hat{w} = (X'X)^{-1}X'y$$

BAYES NETS

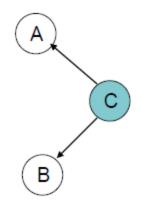
Head to Tail

$$P(a,b|c) = P(a|c)P(b|c)$$



Tail to Tail

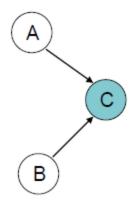
$$P(a,b|c) = P(a|c)P(b|c)$$



Where have we seen this?

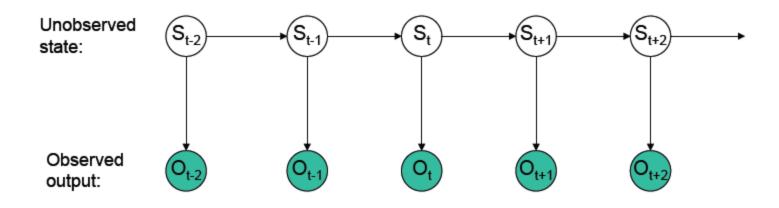
Head to head

$$P(a,b) = P(a)P(b)$$



What is the Bayes Network for $X_1, ..., X_4$ with no assumed conditional independencies?

Bayes Network for a Hidden Markov Model



$$P(S_{t-2}, O_{t-2}, S_{t-1}, \dots, O_{t+2}) =$$

Implies the future is conditionally independent of the past, given the present

Bias – Variance tradeoff in Bayes nets

Give an example of very biased Bayes network?

Network with no edges

Naïve Bayes

Give an example of a network that has high variance?

Network of a distribution with no conditional independence assumptions

Questions?