

10-601 Recitation #1 Function Approximation, Decision Trees, and Overfitting

September 14th, 2011 Shing-hon Lau

Office hours: Friday 3-4 PM

Agenda

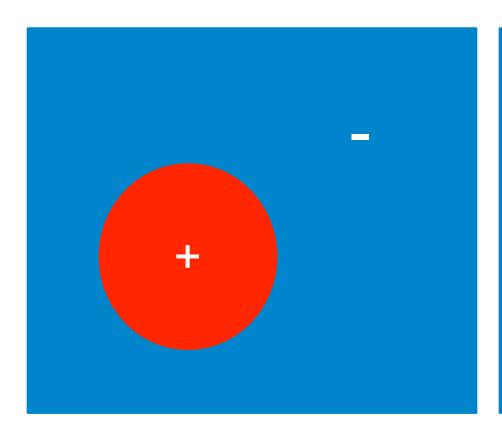
- Administrivia
- Function Approximation
- Decision Trees
- Overfitting

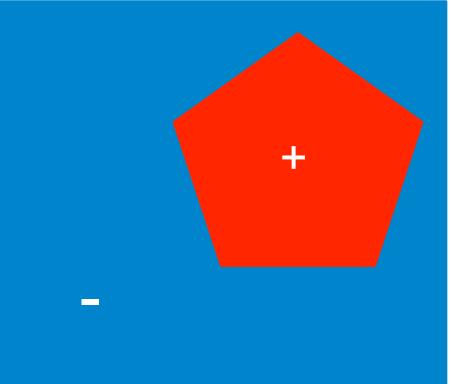
Administrivia

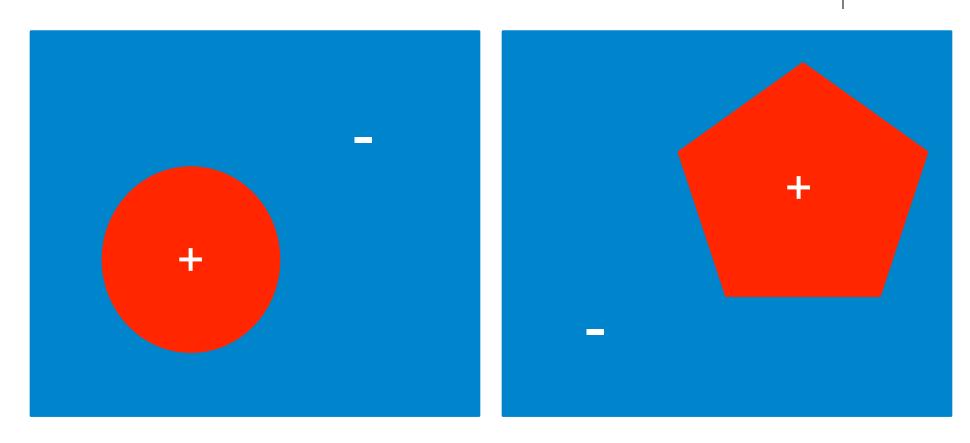
- Course website (www.cs.cmu.edu/~aarti/Class/ 10601/)
- Blackboard (www.cmu.edu/blackboard/)
- Homework #1 out soon (on BB + website)
- Slides online (on course website)
- Mailing lists (10601-instructors, 10601-announce)
- Recitation time/location

- Given:
 - Data X with labels Y
- Learn:
 - Function $f: X \to Y$

 Why can't we search through all possible functions?





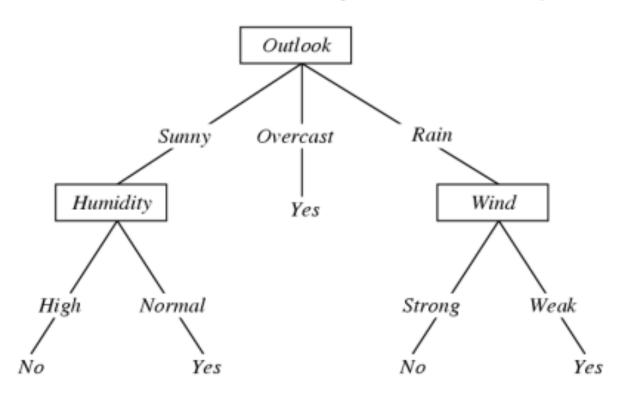


What does a Decision Tree look like?

Decision Trees

A Decision tree for

F: <Outlook, Humidity, Wind, Temp> → PlayTennis?



Decision Tree Algorithm

Top-Down Induction of Decision Trees

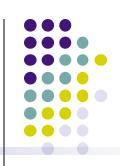
[ID3, C4.5, Quinlan]

node = Root

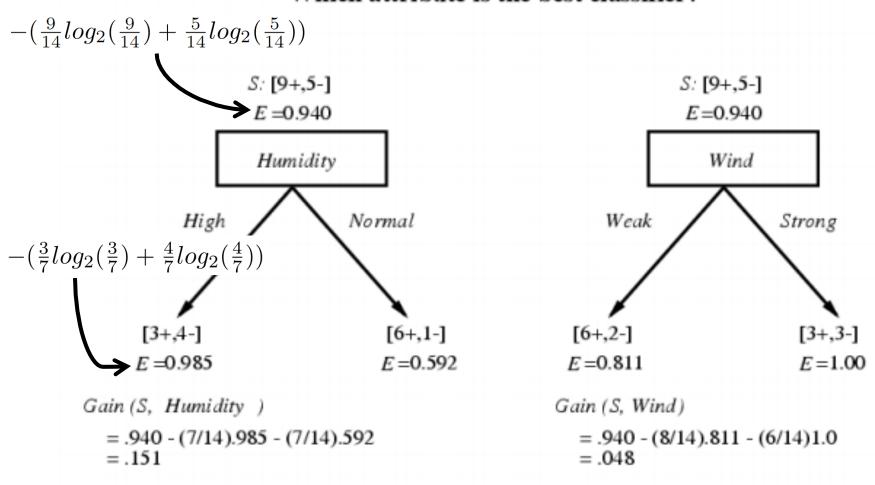
Main loop:

- 1. $A \leftarrow$ the "best" decision attribute for next node
- 2. Assign A as decision attribute for node
- For each value of A, create new descendant of node
- 4. Sort training examples to leaf nodes
- If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes

Defining "Best"



Which attribute is the best classifier?



Continuous Variables

 Why can't we use the same algorithm we used for discrete variables?

What can we do instead?

Decision Tree Algorithm

Top-Down Induction of Decision Trees

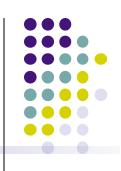
[ID3, C4.5, Quinlan]

node = Root

Main loop:

- 1. $A \leftarrow$ the "best" decision attribute for next node
- 2. Assign A as decision attribute for node
- For each value of A, create new descendant of node
- 4. Sort training examples to leaf nodes
- If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes

Continuous Variables



Consider the following data:

X_1	1.0	2.0	2.6	3.4	4.4
\overline{Y}	+	+	_	_	+

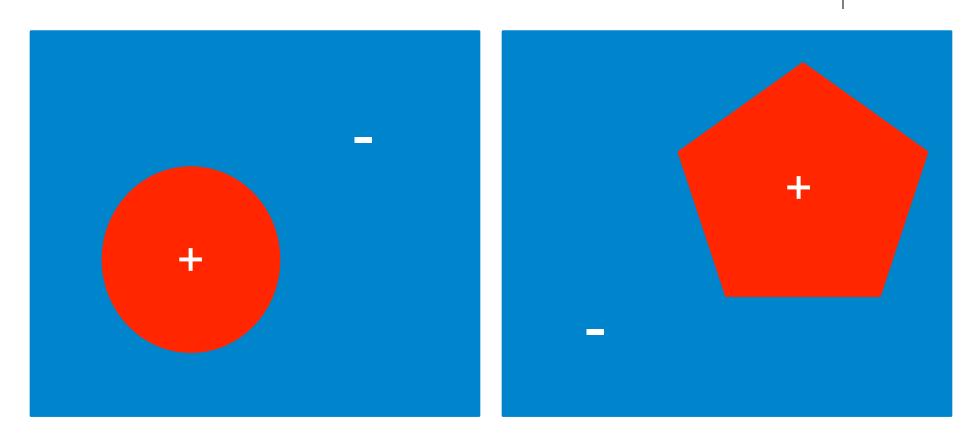
- No difference between x₁ ≤ 1.5 and
 x₁ ≤ 1.51 in terms of the split
- Just consider thresholds between data points

An Example

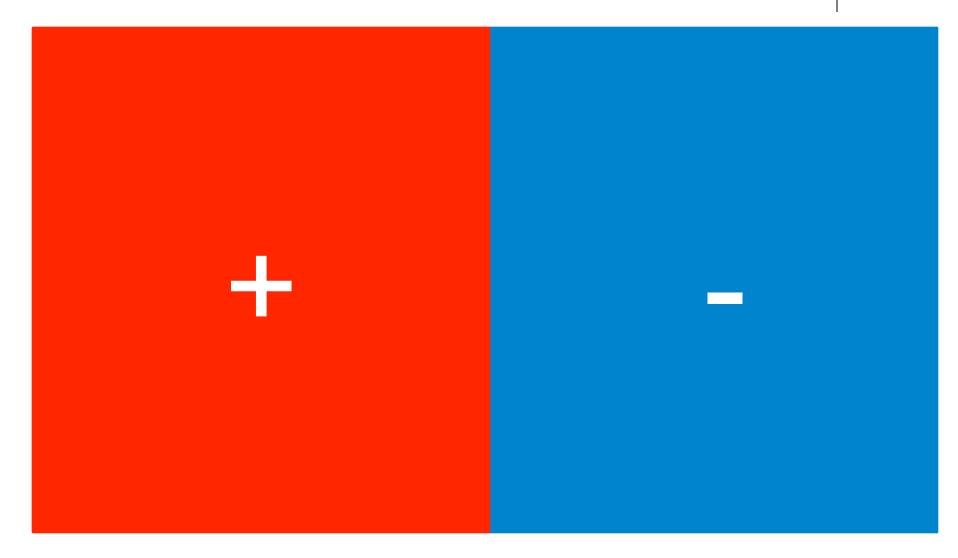
X_1	1.0	2.0	2.6	3.4	4.4
Y	+	+	_	_	+

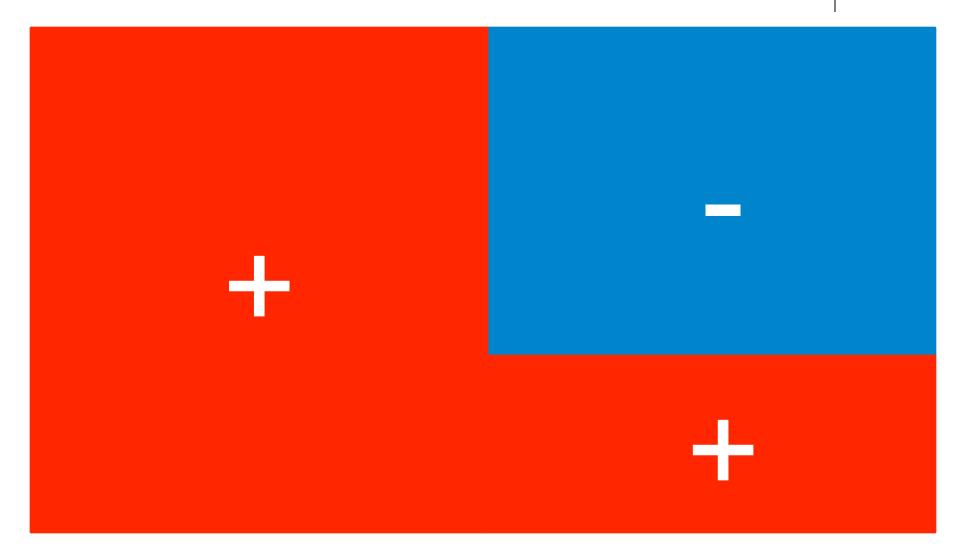


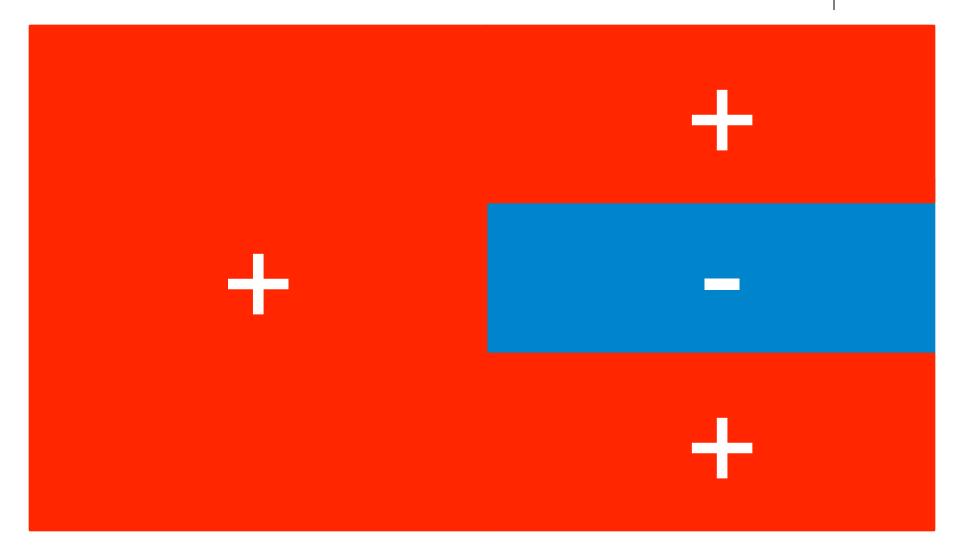
$$IG = 0.97 - 0.97 = 0$$
 $IG = 0.97 - \frac{2}{5}(0) - \frac{3}{5}(-(\frac{1}{3}\log_2(\frac{1}{3}) + \frac{2}{3}\log_2(\frac{2}{3}))) = 0.42$

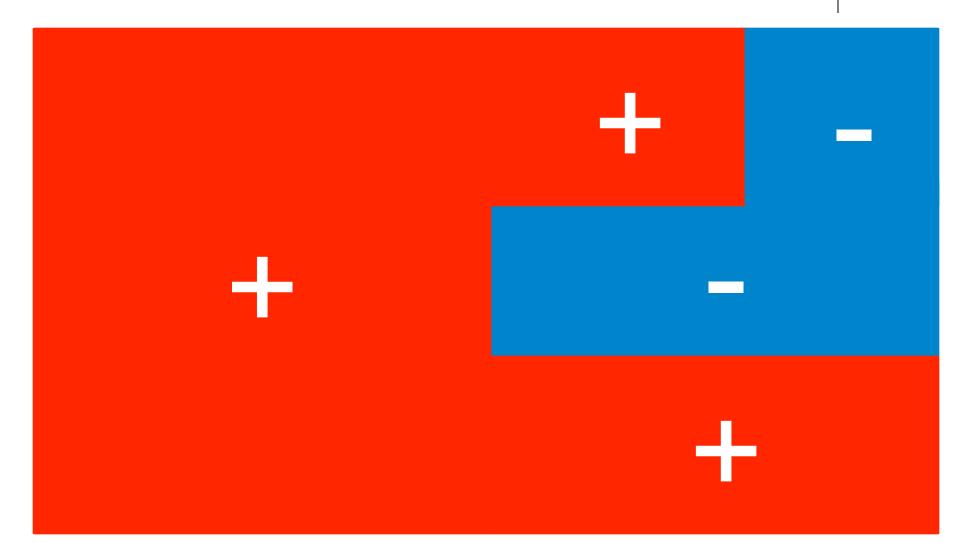


What does a Decision Tree look like?









Overfitting

Consider error of hypothesis h over

- training data: $error_{train}(h)$
- entire distribution \mathcal{D} of data: $error_{\mathcal{D}}(h)$

Hypothesis $h \in H$ overfits training data if there is an alternative hypothesis $h' \in H$ such that

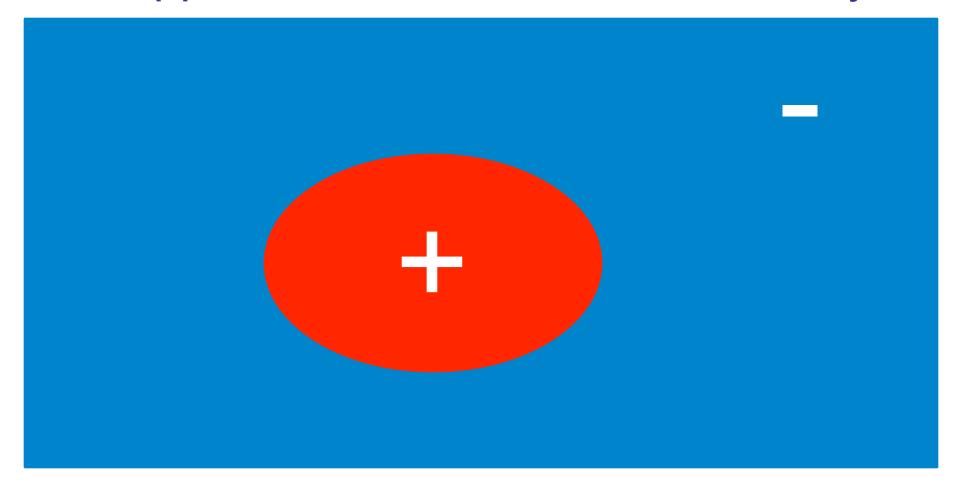
$$error_{train}(h) < error_{train}(h')$$

and

$$error_{\mathcal{D}}(h) > error_{\mathcal{D}}(h')$$

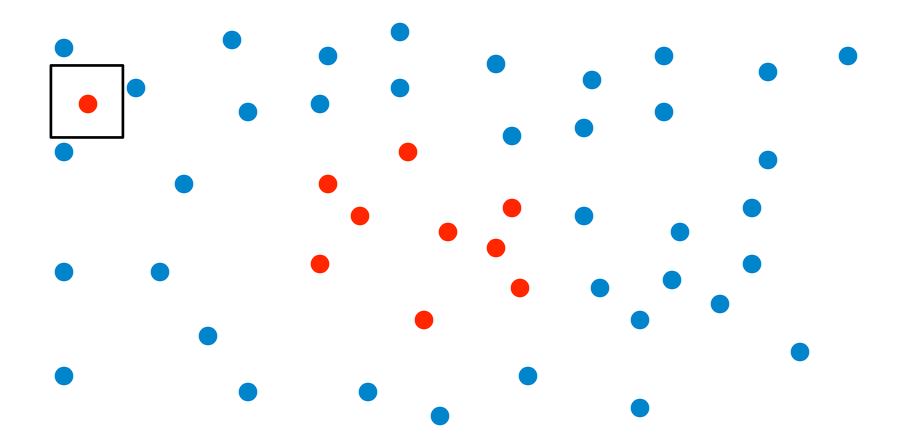
Overfitting in Pictures

Suppose this true decision boundary:



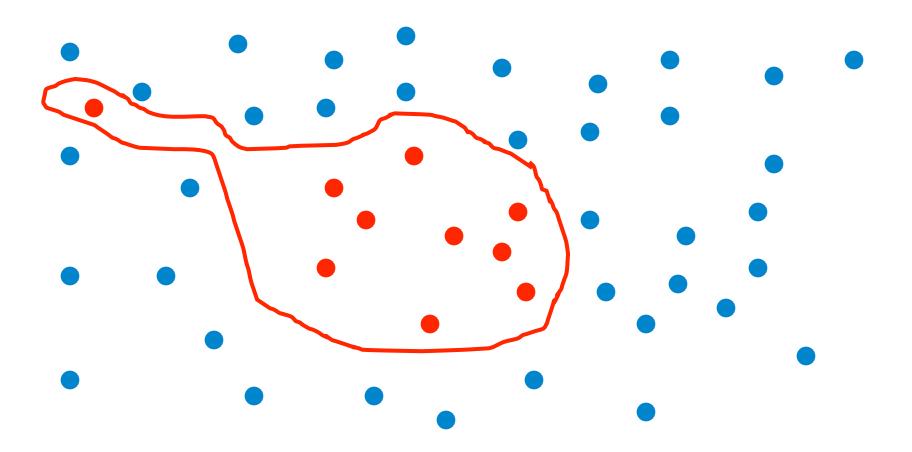
Overfitting in Pictures

Gather these data points:



Overfitting in Pictures

Learn this classifier:



Avoiding Overfitting In Decision Trees

 Stop growing tree when splits are not statistically significant

 Grow a full tree and then do postpruning

XOR Problem

Suppose we have this data:

_	Y	X ₂	X ₁
_	-	0	0
x 1000	+	0	1
	+	1	0
_	-	1	1

 No split is statistically significant, but two splits gives perfect classification

- Build full Decision Tree
- Consider pruning each leaf node
- Remove leaf node if it does not appreciably hurt validation error rate
- Repeat

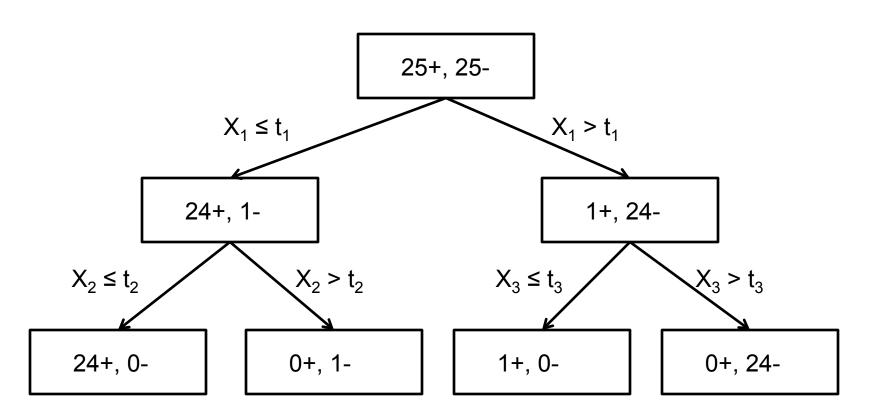
Training, Validation, Testing

Training set used to fit the classifier

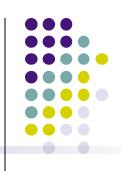
 Validation set used to determine the goodness of the classifier

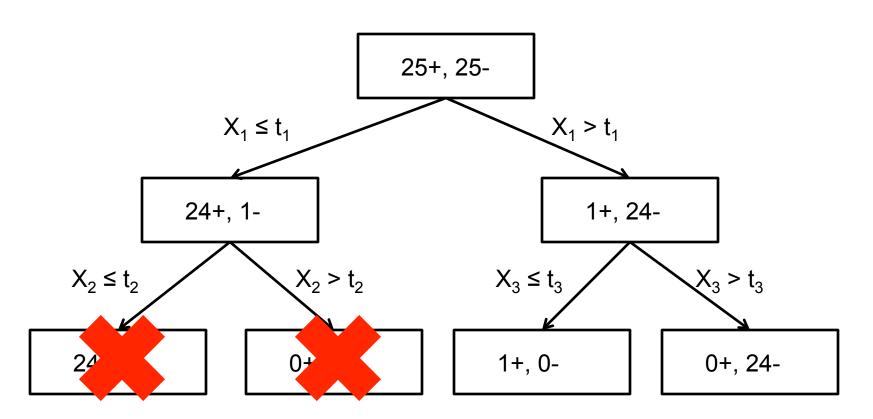
Test set results are final outcome

- Build full Decision Tree
- Consider pruning each split
- Remove split if it does not hurt validation error rate
- Repeat (in a greedy and iterative fashion)

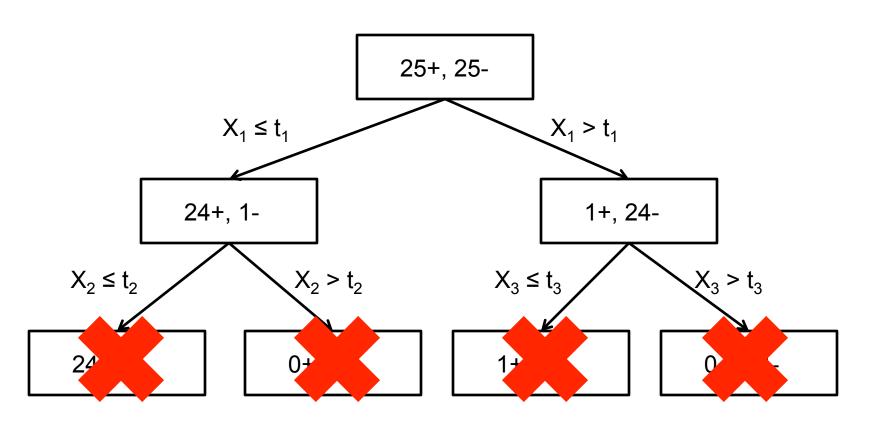


Validation Set Accuracy: 80%

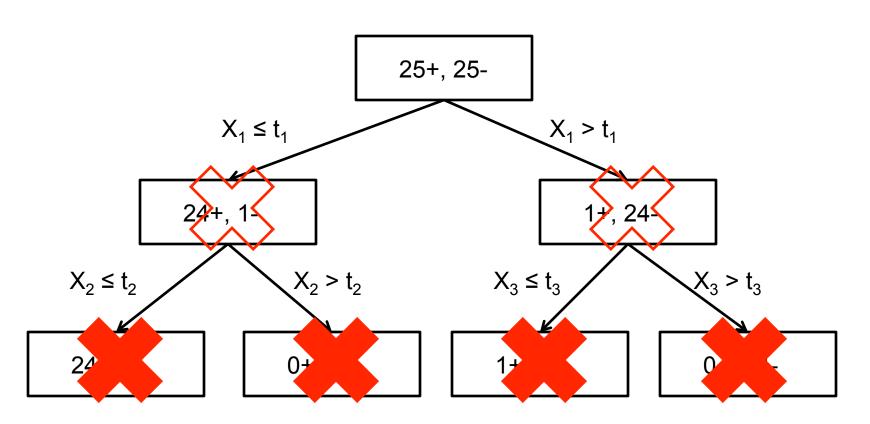




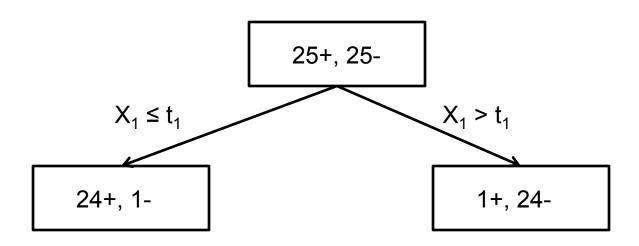
Validation Set Accuracy: 85%



Validation Set Accuracy: 90%



Validation Set Accuracy: 50%



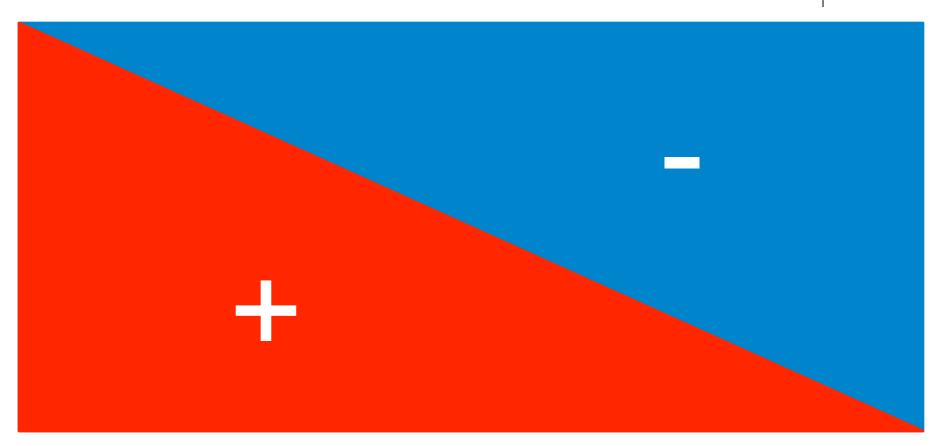
Final Decision Tree

Extra Slides

 Slight changes in the data can significantly affect what Decision Tree is learned

 Changes in splits near the top of the tree will completely change subsequent splits

Capturing Additivity



How can we capture this structure in a DT?

Extensions

- Regression Trees
- Handling missing values

Bagging, Boosting (e.g., Adaboost),
 Random Forest