
10-601 Machine Learning, Fall 2011: Homework 6

Machine Learning Department
Carnegie Mellon University

Due: Dec 5, 5 pm

Instructions There are 3 questions on this assignment. Please submit your completed homework to
Sharon Cavlovich (GHC 8215) by 5 pm on Dec 5. Submit your homework as 3 separate sets of pages,
one for each question. Please staple or paperclip all pages from a single question together, but DO NOT
staple pages from different questions together. This will make it much easier for the TA’s to split up your
homework for grading. Include your name and email address on each set.

1 Kernel Density Estimation [Will Bishop, 20 Points]

In this homework problem, we will explore kernel density estimation using a boxcar kernel. In other words,
given a sample of observed data x1, . . . , xN , we will estimate the probability density function as:

f̂(X) =

∑N
j=1 I (|X − xj | ≤ h)

2hN

where | · | indicates absolute value and I(·) is an indicator function that takes on value 1 when the logical
statement inside the parenthesis is true and 0 otherwise.

1. [3 pts] In the figure below, each dot represents a sampled data point. In this same figure, please draw

f̂(x) for h = 3.

−14 −13 −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9
−0.2

0

0.2

0.4

0.6

0.8

X

E
st

im
at

e 
of

 f(
X

)

1



2. [3 pts] Let F (X) represent the true cumulative distribution function for a random variable X and let
f(X) represent the probability density function for this same variable. Please show that:

E
(
f̂(x)

)
=
F (x+ h)− F (x− h)

2h

3. [6 pts] The figure below shows a portion of a cumulative distribution function, F (X).

(a) Given the point x, please draw and label the points (x+ h, F (x+ h)) and (x− h, F (x− h)).

(b) Please draw a simple graphical representation relating the points (x+ h, F (x+ h)) and (x− h, F (x− h))

to E
(
f̂(x)

)
and in no more than two sentences explain how this is an approximation to f(x), the

true value of the probability density function evaluated at x.

4. [8 pts] Using your intuition gained to this point, please answer true if f̂(x) will be an unbiased estimator
of x in the following scenarios and false if not. Justify your answer.

(a) f(X) is a uniform distribution between 0 and 1. f̂(.25) is estimated using a value of h = .5

(b) f(X) is a uniform distribution between 0 and 1. f̂(.25) is estimated using a value of h = .2

(c) f(X) = 2X if 0 ≤ X ≤ 1 and f(X) = 0 otherwise. f̂(.25) is estimated using a value of h = .2

(d) f(X) = 3
2X

2 if −1 ≤ X ≤ 1 and f(X) = 0 otherwise. f̂(0) is estimated using a value of h = .2

2 Support Vector Machines [Mladen Kolar, 25 points]

Suppose you are given 6 one-dimensional points: 3 with negative labels x1 = −1, x2 = 0, x3 = 1 and 3 with
positive labels x4 = −3, x5 = −2, x6 = 3. It was shown in the class that this data cannot be separated
using a linear separator. However, if the following feature map φ(u) = (u, u2), which transforms points in
R1 to points in R2, is used, a linear separator can perfectly separate the points in the new R2 features space
induced by φ.

2.1 Feature Mappings

1. [2pts] Give the analytic form of the kernel that corresponds to the feature map φ in terms of only X1

and X ′1. Specifically define k(X1, X
′
1).
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2. [5pt] Construct a maximum-margin separating hyperplane. This hyperplane will be a line in R2, which
can be parameterized by its normal equation, i.e. w1Y1 + w2Y2 + c = 0 for appropriate choices of
w1, w2, c. Here, (Y1, Y2) = φ(X1) is the result of applying the feature map φ to the original feature X1.
Give the values for w1, w2, c. Also, explicitly compute the margin for your hyperplane. You do not
need to solve a quadratic program to find the maximum margin hyperplane. Note that the line must
pass somewhere between (-2,4) and (-1,1) (why?), and that the hyperplane must be perpendicular to
the line connecting these two points. Use only two support vectors.

3. [4pt] Apply φ to the data and plot the points in the new R2 feature space. On the plot of the
transformed points, plot the separating hyperplane and the margin, and circle the support vectors.

4. [2pt] Draw the decision boundary of the separating hyperplane in the original R1 feature space.

5. [5pt] Compute the coefficients α and the constant b in Eq. (1) for the kernel k and the support vectors
SV = {u1, u2} you chose in part 4. Be sure to explain how you obtained these coefficients.

y(x) = sign

|SV |∑
n=1

αnynk(x, un) + b

 (1)

Think about the dual form of the quadratic program and the constraints placed on the α values.

6. [2pt] If we add another positive (Y = +) point to the training set at X1 = 5 would the hyperplane or
margin change? Why or why not?

2.2 Infinite Features Spaces

Lets define a new (infinitely) more complicated feature transformation φn : R1 → Rn given in Eq. (2).

φn(x) =

{
e−x

2/2, e−x
2/2x,

e−x
2/2x2√
2

, . . . ,
e−x

2/2xi√
i!

. . . ,
e−x

2/2xn√
n!

}
(2)

Suppose we let n → ∞ and define new feature transformation in Eq. (3). You can think of this feature
transformation as taking some finite feature vector and producing an infinite dimensional feature vector
rather than the simple two dimensional feature vector used in the earlier part of this problem.

φ∞(x) =

{
e−x

2/2, e−x
2/2x,

e−x
2/2x2√
2

, . . . ,
e−x

2/2xi√
i!

. . .

}
(3)

1. [3pt] We know that we can express a linear classifier using only inner products of support vectors in
the transformed feature space as seen in (1). It would be great if we could some how use the feature
space obtained by the feature transformormation φ∞. However, to do this we must be able to compute
the inner product of examples in this infinite vector space. Lets define the inner product between two
infinite vectors a = {a1, . . . , ai, . . .} and b = {b1, . . . , bi, . . .} as the infinite sum given in (4).

k(a, b) = a · b =

∞∑
i=1

aibi (4)

Can we explicity compute k(a, b)? What is the explicit form of k(a, b)? Hint you may want to use the
Taylor series expansion of ex which is given in (5).

ex = lim
n→∞

n∑
i=0

xi

i!
(5)

2. [2pt] With such a high dimensional feature space should we be concerned about overfitting?
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Figure 1: XOR dataset
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Figure 2: Seven point dataset

3 Boosting [Shing-hon Lau, 25 points]

1. [4 pts] Suppose I have the 2-dimensional dataset depicted in Figure 1. Will Adaboost (with Decision
Stumps as the weak classifier) ever achieve better than 50% classification accuracy on this dataset?
Why or why not? Briefly justify your answer.

2. [4 pts] Suppose AdaBoost is run on m training examples, and suppose on each round that the weighted
training error εt of the tth weak hypothesis is at most γ, for some number 0.5 > γ > 0. After how
many iterations, T, will the combined hypothesis H be consistent with the m training examples, i.e.,
achieves zero training error? Your answer should only be expressed in terms of m and γ. (Hint: What
is the training error when 1 example is misclassified?)

For the next six questions, consider the 1-dimensional dataset depicted in Figure 2. Suppose that we
are using Adaboost with Decision Stumps as the weak classifier.

3. [3 pts] Draw the decision boundary of the first classifier, h1. Indicate which side is classified as the +
class.

4. [3 pts] Compute and report ε1 and α1. What is the classification accuracy if we stop Adaboost here?

5. [3 pts] What are the new weights, D2(i), for the seven points? (Hint: Remember to normalize the
weights by Z.)

6. [3 pts] Draw the decision boundary of the second classifier, h2. Again, indicate which side is classified
as the + class.

7. [2 pts] Which point(s) will have the lowest weight after the second iteration of Adaboost is finished?

8. [3 pts] Does the classification accuracy improve between first and second iterations of Adaboost?
Explain briefly why the accuracy does (or does not) improve.
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